Resolved X-ray Line Profiles from O Stars as
a Diagnostic of Wind Mass Loss

David Cohen

Department of Physics & Astronomy
Swarthmore College

Jon Sundqpvist (Delaware and Munich), Maurice Leutenegger (GSFC), Stan Owocki & Dylan Kee (Delaware),Veronique Petit (Florida
Institute of Technology), Marc Gagné (West Chester), Asif ud-Doula (Penn St.Worthington-Scranton)
with
Emma Wollman (Caltech, Swarthmore * 09), James MacArthur (Stanford, Swarthmore " | 1), Zack Li (Swarthmore " 16)

2 800 10 7 _

4 \ 4 - . ) 02 T ) [ ] "
. 5 . ) [y ! Al ' L a'nm . "an ]
. z 400 1 | . S | - —

. 10 — L. ! | !
. ¥ 0 04
- . N | ' ., .00 ° . 4 e o o %ece
. 10 ) . . !
e . - ' : ! N . N -

3 4.9 14.95 15.00 15.05 15.10 15.15

Wavelength (A)



Soft-X-ray emission is ubiquitous in O stars
Lx ~ 107 Leol (Lx ~ 10°' to 1033 ergs s')

soft thermal spectrum, kT ~ few 0.] keV

minimal time variability HD 93129A (O2 If¥)

optical/IR

drumpler 14 in Carina: Chandra



Embedded Wind Shock (EWVS) paradigm
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Radiation-hydrodynamics simulations (with J. Sundqvist, S. Owocki, Z. Li)




Line-Deshadowing Instability (LDI)

LDI (Milne 1926) is intrinsic to any radiation-driven outflow in
which the momentum transfer is mediated by spectral lines
rapidly accelerating material is out of the
Doppler shadow of the material behind it
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>99% of the wind is cold and X-ray

height ('R, - 1)




Chandra grating spectra confirmed the
EVVS scenario

Chandra
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Chandra easily resolves the wind-broadened X-ray emission lines



Chandra Medium Energy Grating (MEG)
Pup (O4 If)
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& Pup (O4If)

this is a
signature of
wind

absorption, I - S
and enables Capella (G5 IlI)
us to

measure the
wind mass-
loss rate
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beta velocity law assumed

star

observer
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Line Asymmetry

2 representative points in
the wind that emit X-rays

-10 -5 5 10



Line Asymmetry

2 representative points in
the wind that emit X-rays

absorption along the ray _
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Line Asymmetry

2 representative points in

/ the wind that emit X-rays

¢ extra absorption for
edshifted photons from the
. rear hemisphere

absorption along the ray
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Wind Profile Model

mass-loss rates ~10%: expect wind to
be modestly optically thick
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Line profile shapes

key parameters: Ro & T «

j ~ p*° forMR.>R,,

= 0 otherwise

Owocki & Cohen 200




Fit the model to data ¢ Pup: Chandra
_Fe XV
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Distribution of R, values for ¢ Pup

_consistent with a global value of Ro ~ 1.5 R«

1S5
Wavelength (A)




Fit the model to data ¢ Pup: Chandra
_Fe XV
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opacity of the cold wind
component (due to photoionization

of C, N, O, Ne, Fe)

wind mass-loss rate

wind terminal

stellar radius )
velocity



note: absorption arises in the dominant, cool wind component

opacity W|th CNO
processed abundances -
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Pup Chandra
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Recall:




Results from the 3 line fits shown previously

1 I 1 I

TlIITlITl]ITl‘TI1ITITII1ITITI[ITTIIITITIIIITII
llllllllllllllllllllllllllllllllllllllllllllll

| N 1 L N |

10 LS5
Wavelength (A)




Fits to 16 lines in the Chandra spectrum of ¢ Pup

IIIIITTIII[IITI1TTII[IITTII

llllllllllllllllllllllllllllllllllllllllllllll

LS5
Wavelength (A)

ITIITTIITIIITIIIIIIT




Fits to 16 lines in the Chandra spectrum of ¢ Pup
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Fits to 16 lines in the Chandra spectrum of ¢ Pup
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M becomes the free parameter of
the fit to the T «(A) trend
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M becomes the free parameter of
the fit to the T «(A) trend
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consistent with new UV&IR measurements that model the wind
clumping (Bouret et al. 2012, Najarro et al. 201 I)
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X-ray line profile based mass-loss rate:

implications for clumping

basic definition: fa = <0 2>/< p >?

clumping factor

ignoring clumping will
cause you to
overestimate the mass-
loss rate

but see Oskinova et al. (2007), Owocki
(2008), Sundqvist (2010, 201 ) - optically
thick clumping in the UV



X-ray line profile based mass-loss rate:
implications for clumping

basic definition: fa = <0 2>/< p >?

clumping factor \

from (column) density
diagnostic like T x from

from density-squared X-ray profiles

diagnostics like H o, IR
& radio free-free



X-ray line profile based mass-loss rate:
implications for clumping

® o
clumping factor fa = <M:O?/< >2

ray

fo ~ 20 for ¢ Pup

but see Puls et al. 2006, Najarro et al. 201 |:
radial variation of clumping factor



clumping factor ~10 to ~20 (Najarro et al. 201 |)
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Fig. 18. Radial stratification of the clumping factor, f, for { Pup. Black
solid: clumping law derived from our model fits. Red solid: Theoretical
predictions by Runacres & Owocki (2002) from hydrodynamical mod-
els, with self-excited line driven instability. Dashed: Average clumping
factors derived by Puls et al. (2006) assuming an outer wind matching
the theoretical predictions. Magenta solid: run of the velocity field in
units of 100 km s™'. See also Sect. 4.




2-D radiation-hydro simulations
clumps break up to the grid scale; fa ~ 10
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HD 93129A (02 If¥)

Tr |14: Chandra

Carina: ESO



Chandra grating spectra of HD 93129A
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Figure 3. The extracted MEG (top) and HEG (bottom) spectra from the seven coadded pointings. Note the different y-axis scales on
the two figures. The wavelengths of lines expected to be present in normal O star Chandra spectra are indicated by the vertical dotted
lines.
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Strong stellar wind: traditional diagnostics

HD 93129A CIV

1

2 iterations
1

O —_—
X in VMAX units
Taresch et al. (1997)
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Fig. 13. Observed Ha profile (solid) compared with the calculation
assuming a mass loss of 18 x107° Mg /yr (dashed). Note that the blue
narrow emission peak originates from the H II-region emission.
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HD 93129A
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wind absorption model (Leutenegger et al. 2010)
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Lower mass-loss rate: consistent with H o ?



Lower mass-loss rate: consistent with H & ?

Yes! With clumping factor of foq = 12
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lower mass-loss rates than theory predicts
with clumping factors typically of fo ~ 20

Cohen et al., 2014, ,439,908
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X-ray mass-loss rates: a few times less
than theoretical predictions
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Conclusions

from Chandra resolved X-ray line profile spectroscopy

|. Embedded Wind Shock scenario - inspired by
hydro simulations of the LDI - is consistent
with X-ray emission properties

* Mass-loss rates are lowered by roughly a
factor of three

*Clumping factors of order |0 are consistent
with optical and X-ray diagnostics

* Clumping starts at the base of the wind,
lower than the onset of X-ray emission




