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luminous galaxies might not be detected in
current X-ray surveys.

Revealing the correlation between the SFR
and the BHAR In star-forming galaxies with Far-IR emission in obscured and un-obscured Quasars

C h an dra There is increasing evidence for the connection between SFR and BHAR in the starburst

galaxies and powerful AGNs consistent with a scenario in which AGN and galaxies have
Studies of the typical star formation rates in AGN host galaxies have shown that while gone through a dust-enshroud phase, where the gas-rich major merger drives both active
there is strong SFR-BHAR correlation in high luminosity AGN (Rosario et al., 2012), at starburst and luminous AGN activity (i.e. quasar) (e.g. Sanders 1988, Hopkins 2008). In

this phase, the rich dust and gas in the host galaxy might also be responsible for the
obscuration observed in some luminous AGN. However, results current X-ray selected
AGN samples do not support this scenario (e.g. Rovilos et al. 2012, Merloni et al. 2014).

lower luminosity AGN the connection appears to be relatively weak or absent. This
difference between the high- and low-luminosity AGN may be attributed to the
different time scales of star formation and AGN accretion (Hickox et al. 2014). Since

AGN accretion rates vary in time scale much shorter than that of star formation, the To investigate the heavily obscured quasar population, we study an IR-selected quasar
average BHAR for star-forming galaxies might be a better indicator to study the sample at 0.7<z<1.8 in Bootes (Hickox et al. 2007) to test whether the obscuration in
connection between SFR and accretion. bright AGN is related to star formation. We separated our sample into obscured AGN and
We select 1,785 star-forming unobscured AGN using a optical/mid-IR color selection criteria (Hickox et al. 2007). We
galaxies selected using Herschel 45— LN = B N - N measured the far-IR detection fraction for obscured and un-obscured AGN separately,
SPIRE 250 um filter (Alberts et al ﬁ]s)eteﬁ;ited AGN 0 and found that obscured AGN have a higher far-IR detection fraction and stronger SF
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correlated with SFR in SF galaxies, |ines. Individual AGN are plotted as stars, while the X-ray
which support a scenario in which stacking luminosities for galaxies not individually detected log Le;um [erg/s]
galaxy and SMBH grow from a N X-ray are shown as downward trangles. For 46.0 4415 45:110 4515 46(1)26
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To explore the effect of the star-forming gas and dust to the observed AGN properties, comparison, we also plot the i EII -
tilize the data from the Chandra Deep Field South (CDFS) 4Ms catalog. We Hickox et al. (2014) toy model in 452 .- 1116
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a stronger 6.4 keV iron ka line, which indicates a stronger nuclear obscuration. This log L . [erg/s]

implies a connection between the host galaxy SF and AGN obscuration.

Sl anll } SISy Conclusion
SPI’J— | -H“i.j_ | é Jf[ mil *f:,% In these works, we attempted to addresses one of the most important
. Mg A 1T Thiy unresolved issue in current studies of galaxy evolution, the origin of the tight
Ty, L | relationship between the SMBH mass and the host galaxy mass. We have
d | T o | found that the average BHAR and SFR are strongly correlated in SF galaxies.
“,"g ; | s | B This is likely due to a common gas reservoir which fuels both active SF and
3 1 ETUSLNNNINIG R WNTICH AUIET] YT BH accretion over galaxy evolution time scale. We have also found that the
B : I o Fig. 3 | é "E,,e,gy(k;w s star-forming dust is connected to the obscuration seen in both the optical and
We use X-ray stacking analysis to study the average X-ray spectra for IR-bright and IR-faint the X-ray wavelengths. This suggests that the in addition to a parsec-scale
galaxies, we find that for |IR-bright galaxies, the average X-ray spectrum show signs of torus, the presence of large-scale star-forming dust might also play obscure

stronger Fe-Ka emission line, which is an indicator of AGN obscuration.
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