Introduction to SHERPA

The Modeling and Fitting Tool of the CIAO Software System

Aneta Siemiginowska
What can you do in Sherpa?

- Standard PHA based analysis.
- Model data in many spectral bands simultaneously, e.g. optical/X-rays.
- Access ATOMDB and GUIDE/ISIS for grating data analysis.
- Fit radial profiles.
- Simulate 1D data.
- Model 2D image data, e.g. fit surface brightness of the extended source.
- Get normalization of your PSF, while fitting the data with 1D/2D PSF.
- Use the PSF as a convolution kernel in the 2D image analysis (FFT or sliding cell).
- Convolution using the TCD library kernel.
- Use of exposure maps in the image analysis.
- Joint-mode data: spatial-spectral, spatial-timing
- Use scripts based on Sherpa only commands.
- Use S-lang on command line and in S-lang based scripts.
- Use your own models with User Models and S-lang user models.
Standard PHA based analysis:

- **Source data:**
 - can be modeled in energy/wavelength space.
 - multiple data sets can be modeled with the same or different models in one Sherpa session.
 - data can be filtered on the command line, or from filter file.

- **Instrument responses (RMF/ARF):**
 - are entered independently from the source data.
 - one set of instrument responses can be read once and applied to multiple data sets.
 - several instrument responses and use in analysis of one source model or multiple data sets.
 - Future: multiple response files can be used in one source model expression.

- **Background files:**
 - are entered independently from the source data.
 - multiple background files can be used for one data set, e.g. grating analysis
 - the same background can be applied to multiple data sets.
 - background can be modeled independently of the source data, and have its separate instrument responses.
 - background can be modeled simultaneously with the source data.
 - background can be subtracted from the source data (subtract/unsubtract).
Main SHERPA Components

- Data Input/Output.
- Visualization through ChIPS and ds9
- Model library and model language.
- Statistics and Error Analysis.
- Optimization Methods.
Data Input/Output

- General use of data type and dimensionality.
- Supported types of files: ASCII, FITS binary tables and Images, PHA types I & II, IRAF IMH and QPOE files.
- Sherpa:
 - groups the data if appropriate;
 - treats integer, float or double precision data;
 - supports data of arbitrary dimensionality
- I/O interface through Data Model and Varmm
- Filtering while reading the data.
- Input data on the command line in two ways.
sherpa> data "image.fits[150:300,160:310]"
sherpa> show
Current Data Files:
Total Size: 22801 bins (or pixels)
Dimensions: 2
Size: 151 x 151
Total counts (or values): 20711 cts

or

sherpa> mydata=readfile("image.fits[150:300,160:310]")
sherpa> print(mydata)
filename = image.fits
path = /data
filter = [150:300,160:310]
naxes = 2
transform = TAN
datatype = Real4
pixels = Float_Type[151,151]
crval = Double_Type[2]
crpix = Double_Type[2]
crdelt = Double_Type[2]
sherpa> print(mydata.crval[0])
278.386
sherpa> print(mydata.crval[1])
-10.5899
MODELS

- Three main type of models:

 Source

 Background

 Instrument

- Model library consists of several models (plus XSPEC v.11) which can be used to define a source or background model.

- There are different types of instrument models:

 RSP

 PsfFromTCD

 PsfFromFile

- **Instrument** models are **convolved** with **Source** and **Background** models before the model predicted data is compared with the observed data.
Instrument and Background models are NOT required. Source models **have to be defined** for fitting.
RSP[rsp]
 RMF file name:
 ARF file name:
 EEARF file name:
PSFfromTCD[psffromtcd]

<table>
<thead>
<tr>
<th>Param</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>numCuts</td>
<td>frozen</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>convTyp</td>
<td>frozen</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>xsize</td>
<td>frozen</td>
<td>4</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>ysize</td>
<td>frozen</td>
<td>4</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>nsigma</td>
<td>frozen</td>
<td>2</td>
<td>0.0100</td>
<td>100</td>
</tr>
<tr>
<td>funcTyp</td>
<td>frozen</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>norm</td>
<td>frozen</td>
<td>1</td>
<td>0</td>
<td>3.4028e+38</td>
</tr>
<tr>
<td>dim</td>
<td>frozen</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

The Function Type is: Gaussian.

Dimension: 1

PSFfromFile[psffromFile]

<table>
<thead>
<tr>
<th>Param</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>numCuts</td>
<td>frozen</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>convTyp</td>
<td>frozen</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>xsize</td>
<td>frozen</td>
<td>32</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>ysize</td>
<td>frozen</td>
<td>32</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>xoff</td>
<td>frozen</td>
<td>0</td>
<td>-512</td>
<td>512</td>
</tr>
<tr>
<td>yoff</td>
<td>frozen</td>
<td>0</td>
<td>-512</td>
<td>512</td>
</tr>
<tr>
<td>xpos</td>
<td>thawed</td>
<td>512</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>ypos</td>
<td>thawed</td>
<td>512</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>norm</td>
<td>frozen</td>
<td>1</td>
<td>0</td>
<td>1000</td>
</tr>
</tbody>
</table>
Model Language

- All predefined in model library models can be used in model expression to build a source or background model.

- Each library model can be given a unique name within Sherpa session.

```latex
sherpa> gauss1d[g1]
sherpa> source = ATTEN[att1]*BPL[b1]
att1.hcol parameter value [1e+20]
att1.heiRatio parameter value [0.1]
att1.heiiRatio parameter value [0.01]
b1.gamma1 parameter value [0]
b1.gamma2 parameter value [0]
b1.eb parameter value [100]
b1.ref parameter value [1]
b1.ampl parameter value [1]
```

- Model Parameters can be linked to other model parameters, arithmetic expression or other models.

```latex
sherpa> source = POLY[con]+gauss1d[g1]+gauss1d[g2]
sherpa> g1.ampl => 0.4*g2.ampl

or

sherpa> func = const1d[red]
sherpa> g1.pos => 0.568*func
```
An argument of a model (e.g. energy) is defined as an expression in **Nested Models**.

Parameter Expression:

```
sherpa> Temperature = POLY
sherpa> BB.kT => Temperature
sherpa> show source
BB
```

<table>
<thead>
<tr>
<th>Param</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>kT</td>
<td>link</td>
<td>varying</td>
<td>expression: Temperature</td>
<td></td>
</tr>
</tbody>
</table>

```
exergy = SHLOG[mod]
```

```
sherpa> source = BB{xenergy}
sherpa> show source
BB{ xenergy }
```

<table>
<thead>
<tr>
<th>Param</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>kT</td>
<td>thawed</td>
<td>0.3</td>
<td>0.1000</td>
<td>1000</td>
</tr>
<tr>
<td>ampl</td>
<td>thawed</td>
<td>0.001</td>
<td>1e-20</td>
<td>3.4028e+38</td>
</tr>
</tbody>
</table>

```
xenergy = SHLOG[mod]
```

```
show source
```

<table>
<thead>
<tr>
<th>Param</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset</td>
<td>frozen</td>
<td>0-3.4028e+38</td>
<td>3.4028e+38</td>
<td></td>
</tr>
<tr>
<td>coeff</td>
<td>frozen</td>
<td>1-3.4028e+38</td>
<td>3.4028e+38</td>
<td></td>
</tr>
<tr>
<td>ampl</td>
<td>frozen</td>
<td>1</td>
<td>0</td>
<td>3.4028e+38</td>
</tr>
</tbody>
</table>
For **Joint-Mode** analysis one can apply models on each axis:

```plaintext
sherpa> DATA image.fits FITSIMAGE
sherpa> LORENTZ[SpatialAxis0](98:5:200, 70:50:90, 1:1:200)
sherpa> POWLAW1D[SpecAxis1]
sherpa> SRC = SpatialAxis0{x1}*SpecAxis1{x2}
sherpa> show source
(SpatialAxis0{ 0 } * SpecAxis1{ 1 })
lorentz1d[SpatialAxis0] (integrate: on)

<table>
<thead>
<tr>
<th>Param</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fwhm</td>
<td>98</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>pos</td>
<td>70</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>ampl</td>
<td>1</td>
<td>1</td>
<td>200</td>
</tr>
</tbody>
</table>

powlaw1d[SpecAxis1] (integrate: on)

<table>
<thead>
<tr>
<th>Param</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gamma</td>
<td>1.5</td>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>ref</td>
<td>1-3.4028e+38</td>
<td>3.4028e+38</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ampl</td>
<td>1</td>
<td>1e-20</td>
<td>3.4028e+38</td>
</tr>
</tbody>
</table>
```
Fit Statistics in Sherpa:

A key feature of Sherpa is its large array of statistics appropriate for analyzing Poisson-distributed (\textit{i.e.} counts) data.

- **Statistics based on \(\chi^2\):**
 - CHI GEHRELS
 - CHI DVAR
 - CHI MVAR
 - CHI PARENT
 - CHI PRIMINI

- **Statistics based on the Poisson likelihood \(\mathcal{L}\):**
 - CASH
 - BAYES

If the data are not Poisson-distributed (\textit{e.g.} fluxes), then alternatives include:

- least-squares fitting: setting all variances to one; or
- providing errors in an input file.
\(\chi^2 \)-Based Statistics

The \(\chi^2 \) statistic is

\[
\chi^2 \equiv \sum_i \frac{(D_i - M_i)^2}{\sigma_i^2},
\]

where

- \(D_i \) represents the observed datum in bin \(i \);
- \(M_i \) represents the predicted model counts in bin \(i \); and
- \(\sigma_i^2 \) represents the variance of the sampling distribution for \(D_i \).

\(\chi^2 \) Statistic

\[
\frac{\sigma_i^2}{\sum_{i=1}^{N} D_i}
\]

GEHRELS: \([1 + \sqrt{D_i + 0.75}]^2\)

DVAR \(D_i \)

MVAR \(M_i \)

PARENT \(\frac{\sum_{i=1}^{N} D_i}{N} \)

PRIMINI \(M_i \) from previous best-fit

Likelihood-Based Statistics

The CASH statistic is

\[C \equiv 2 \sum_{i} [M_{i} - D_{i} \log M_{i}] \propto -2 \log \mathcal{L}, \]

where

- \(D_{i} \) represents the observed datum in bin \(i \);
- \(M_{i} \) represents the predicted model counts in bin \(i \); and
- \(\mathcal{L} = \prod_{i} \left(\frac{M_{i}^{D_{i}}}{D_{i}!} \right) \exp(-M_{i}) \).