
ots-build.5

Page 1

NAME
ots-build - bash library to build OTS packages

SYNTAX
 # load library
 if ots_build=$(pkg-config --libs ots-build); then
 . $ots_build
 else
 echo >&2 "unable to load ots-build library"
 exit 1
 fi

 # override some default variables
 otsb_set var1 val1
 otsb_set var2 val2

 # initialize the library
 otsb_init

 # parse the command line
 otsb_options "$@"

 # create build variables
 otsb_set_build_variables

 otsb_run_cmds

DESCRIPTION
Sometimes the Off-The-Shelf (OTS) software you need has a complicated
 build workflow. If you want to
manage that in a scripted
 (patch)-config-build-test-install environment, that usually means
 building a script
to perform all of the work. If you are working with
 dozens of OTS package, that can be a lot of redundant
work.

ots-build is a bash library which provides support for lots of
 common tasks in building OTS software. It
provides a framework for
 command line arguments and for running partial or complete builds. It
 provides
a means of unarchiving packages and patching the source prior
 to configuration. It provides a rudimentary
logging mechanism to keep
 things tidy.

Because ots-build is a library, you'll still have to write a driver
 script to perform the build, but it should be
much simpler.

ots-build trys to figure out some things about the package to be
 built, such as name and version, which is
useful when installing into
 staging areas (such as used by the graft or stow commands). It
 does this
using the name of the source directory (see the --srcdir
 option).

USING THE LIBRARY
ots-build consists of a single file containing bash functions.

driver scripts use those functions to implement the build process.

Typically a site would create a wrapper around ots-build to
 customize defaults or add extra functionality
required for the site.

ots-build.5

Page 2

Assumptions
ots-build makes a few assumptions about where package archives and
 patches are located. These can
be overridden with command line
 arguments or hooks. Two directories are special:

The directory containing the build script

ots-build assumes that the build script, the package archive, and
 an optional patch are located in
the same directory.

The directory containing the unarchive package source.

ots-build deduces the package name and version from the name of the
 directory containing the
unarchived source (which is usually something
 like package-x.y.z). It uses this to create the
default patch file
 name.

This information can be fairly useful to the driver scripts, for
 instance in specifying version specific
compiler or installation
 flags.

The example autoconf driver script uses it to offer support for
 installing packages into staged
areas for use by the graft or stow commands.

Note: By default ots-build assumes that the current directory
 contains the source. If this is not the
case, the --srcdir option
 must be specified.

Sharing information with the library
In order to simplify the interface, much of the information needed and
 provided by ots-build is shared via
bash variables. Variables
 associated with particular tasks (for instance parsing the command
 line) are
described in the documentation for those tasks.

ots-build is designed so that it does not override variables which
 have already been set. This is
accomplished by using the otsb_set
 and otsb_set_arr functions to modify variable values. These

functions will only set a value if the variable has not yet been set;
 variables with values will not be
changed.

The only deviation from this behavior is when parsing command line
 options; these always override
preset variables.

Variables which are special to ots-build use the otsbv_set
 command.

Driver Scripts
Driver scripts are bash scripts which use ots-build to perform
 build operations. They must be invoked
with at least one argument
 specifying which command to perform. See Commands for the commands

provided by ots-build. The driver script specifies which commands
 are legal and the code to perform
them.

The typical sequence of invocation of ots-build functions is

1 Load the library.

2 Initialize the library using otsb_init

3 Define actions for commands

4 Specify command line options

5 Parse the command line using otsb_options

6 Generate values for the variables which control the build using otsb_set_build_variables.

7 Peform requested actions using otsb_run_cmds

ots-build.5

Page 3

Wrapping ots-build
Rather than encode site-specific options or defaults into driver
 scripts, it's easier to centralize the
information in a wrapper around ots-build. The driver scripts should load the wrapper library
 instead of
ots-build.

Customization is done by providing code which will be run by ots-build functions at particular points
(hooks) in their execution
 sequences. The code can be used to specify default values for
 parameters, add
command line options, create new build variables, or
 whatever might be needed to support local build
requirements.

ots-build maintains a execution queue for each hook location. The otsb_hook_push_front function
adds code to the front of the queue,
 while otsb_hook_push_back adds code to the back of the queue.

The following hooks are available:

init_before

The code is run at the start of otsb_init.

init_after

The code is run at the end of otsb_init.

options_before

The code is run at the start of otsb_options.

options_after

The code is run at the end of otsb_options.

build_variables_before

The code is run at the start of otsb_set_build_variables.

build_variables_after

The code is run at the end of otsb_set_build_variables.

For example, let's say that a site wants to specify a default value
 for the --prefix option, add an additional
command line option, and
 set some site-specific build variables. Here's one way of doing this:

 #!/bin/bash

 # don't load this multiple times
 if [["$_mst_otsb_loaded" && "$_mst_otsb_loaded" -eq 1]]; then
 return 0
 else
 _mst_otsb_loaded=1
 fi

 # load ots-build
 if ots_build=$(pkg-config --libs ots-build); then
 . $ots_build
 else
 echo >&2 "unable to load ots-build library"
 exit 1
 fi

ots-build.5

Page 4

 create_new_options() {

 # On Solaris, prefer GNU patch & tar
 # create defaults here so that help information can show the
 # default values

 case `uname -s` in

 	 SunOS)

 	 otsb_set make $(command -v gmake)
 	 otsb_set tar $(command -v gtar)
 	 otsbv_set patch-cmd /usr/local/bin/patch
 	 ;;

 	 *)
 	 otsb_set make $(command -v make)
 	 otsb_set tar $(command -v tar)
 	 ;;

 esac

 otsb_set ots_root /soft/ots

 otsb_add_option scalar ots-root \
 "top-level directory containing installed OTS [$ots_root]"

 otsb_add_option scalar ots-pkgs \
 "directory into which OTS packages will be installed
[$ots-root/pkgs]"

 otsb_add_option scalar make "name of the make command [$make]"
 otsb_add_option scalar tar "name of the tar command [$tar]"

 otsb_add_option array config-opts 'extra options for configure; may be
specified multiple times'
 }

 default_option_values () {

 # can't set this until after otsb_options is run,
 # as it depends upon the value of the ots-root option
 otsb_set ots_pkgs ${ots_root}/pkgs
 }

ots-build.5

Page 5

 otsb_hook_push_back options_before create_new_options
 otsb_hook_push_back options_after default_option_values

Loading the Library
The library must be loaded at the very start of the build script. ots-build provides a pkg-config metadata
file, so may be loaded
 via

 if ots_build=$(pkg-config --libs ots-build); then
 . $ots_build
 else
 echo >&2 "unable to load ots-build library"
 exit 1
 fi

Initializing the Library
ots-build must be initialized by calling the otsb_init function.

Parsing Command Line Options
The otsb_options function is used to parse command line options and
 arguments. It takes a list of
tokens to parse. Typically this is
 just those passed on the command line to the script:

 otsb_options "$@"

The quotes are required to maintain proper tokenization. Note that $@ is set to a function's arguments
within a function, so the above
 invocation will only work in the main body of the bash script.

otsb-build provides a number of command line options by
 default. Prior to issuing the otsb_options
command, additional command line
 options may be added using otsb_add_option.

ots-build provides the following options out of the box:

--prefix

--exec-prefix

These are the standard prefixes used by most software installers

--log

--logconsole

--logpfx

--logsingle

See Logging

--help

Outputs help information and exits

--version

Outputs the version of otsb-build and exits.

--srcdir

This specifies the directory containing the source. ots-build will
 change to this directory before
performing any actions. It defaults
 to the current directory. The change of directory takes place at
the
 end of ots_options, before any hooks are run.

ots-build.5

Page 6

--archive

 --archive <filename>

The file name of the archive containing the source. If the unpack
 command is specified the
archive is unpacked and ots-build will
 change into the archive directory. Currently only
compressed tar
 files are handled. ots-build can handle archives which don't
 unpack into a single
top-level directory. See Commands for more
 information on what happens after an unpack
operation.

If the filename is specified with a directory, it is assumed to be in
 the directory containing the
driver script.

--patch-cmd

The patch command to use. It defaults to the patch command in the
 users path.

--patch-opts

Options to pass to the patch command in addition to the patch file.
 It defaults to -p0 -N -s.

Option format

Only long options (preceded by --) are recognized. Options which
 take values may be separated from
their values by a = character or
 white space. For example:

 --exec-prefix=a --prefix b --flag

Hyphens in option names may be specified as underscores.

Command line options are either boolean (presence signifies true or
 false), scalars (take a single value)
or arrays (may be specified
 multiple times, appending each value to an array). Flag options may
 be
specified either as affirmative (--flag) or negative
 (--no-flag).

Retrieving option values and setting defaults

After parsing, the values of the options are stored in bash variables
 with the same name as the option
(with any hyphens converted to
 underscores). Boolean values are represented as the string true for
 true
and false for false. Options which are not specified on
 the command line are not set to any default
value.

Default values for options created via otsb_add_option may be set
 with otsb_set before calling
otsb_options.

In addition to the options that you provide, ots-build provides
 some of its own. These are stored in
variables with a special prefix, otsbv_ to prevent confusion. To specify defaults, use the otsbv_set
command prior to calling otsb_init. For example, the --logsingle option value will be stored in
otsbv_logsingle. To
 set its default value:

 otsbv_set logsingle true

Option help

ots-build supports a --help option.

Options added via calls to otsb_add_option will use the help string
 provided in those calls.

Options provided by ots-build have pre-defined help strings which
 can be overridden by calling the
otsb_help function prior to
 calling ots_init.

ots-build.5

Page 7

Arguments
The only arguments accepted on the command line are the names of
 commands. ots-build provides
some built-in commands (see Commands for more information).

The names of commands that the driver script provides should be
 placed in one of two arrays:

otsb_commands

This array should contain all of the commands which are part of the
 normal build workflow.
ots-build provides an all command which
 will run all of these in the order specified in
otsb_commands.

This array defaults to

 otsb_commands=(patch configure build test install)

otsb_opt_commands

This array should contain any commands which are not part of the
 normal build workflow. They
are not run by the all command.

The actual requested commands are made available in the otsb_req_cmds array after the command
line is parsed. See Commands for more information on how to interface build
 commands to the
auto-invocation code.

Setting build variables
After invoking otsb_options and before running commands, build
 variables must be set by calling
otsb_set_build_variables. otsb_set_build_variables assumes that the current directory is the

source directory. This is automatically performed by otsb_options
 if the --srcdir options is specified on
the command line.

The prefix variable must already be defined, which is typically set
 via the --prefix command line
option.

The following variables are set; they may be overriden prior
 to invoking otsb_set_build_variables
using otsb_set.

otsbv_import_root

This is a directory which may contain things associated with the
 package, such as a patch file. By
default this is extracted from the
 name of the build script (under the assumption that all package

related things are in the same directory as the build script). It may
 also be set with the
--import-root option.

package

This is the name of the package (including version information). This
 is by default extracted from
the name of the current directory
 using the otsb_pkg function (use the --srcdir to specify an

alternative directory).

package_name

The name of the package (without any version information). This is by
 default derived from the
package variable using the otsb_pkg_name function. An alternative to overriding the variable
 is
to redefine the otsb_pkg_name function.

package_version

The version of the package. This is by default derived from the package variable using the
otsb_pkg_version function. An
 alternative to overriding the variable is to redefine the

ots-build.5

Page 8

otsb_pkg_name function.

patchfile

The name of the patch file (if any). This is by default set to

 $$package.patch

exec_prefix

This will default to the value of prefix if it not already set.

bindir

Defaults to

 ${exec_prefix}/bin

libdir

Defaults to

 ${exec_prefix}/lib

incdir

Defaults to

 ${prefix}/include/${package}

mandir

Defaults to

 ${prefix}/man

docdir

Defaults to

 ${prefix}/share/doc/$package

Commands
The main purpose of ots-build is to run commands. The commands
 to run are specified on the command
line (see Arguments).
 The commands which will always be available are:

all

Run all of the commands in the otsb_commands array, in order specified.

dump

Output the command line arguments.

unpack

Unpack the source archive and change into the containing directory.
 The --archive option must
have been specified.

Because the unpacking is done after the otsb_set_build_variables
 function has executed, the
values of variables which depend
 upon the current directory being the build directory will be
incorrect.

Therefore, after unpacking the driver script is automatically executed
 again with the --srcdir option

ots-build.5

Page 9

set to the directory containing the
 unpacked source.

show-cmds

Output a list of the non-administrative (i.e. actual build workflow)
 commands to stdout.

ots-build provides the otsb_run_cmds function which will execute
 the commands specified on the
command line. A command is
 implemented as a bash function of the same name, prefixed with
otsb_cmd_. For example, the install command might be written
 as:

 otsb_cmd_install () {
 ... commands to perform the actual install ...
 }

It is important that these functions either exit or return with
 non-zero values if an error ocurred (see Errors
for other means of
 signalling an error). These functions are invoked in subshells, to
 isolate them from the
rest of ots-build.

Stub functions are provided for the configure, build, test, and install commands. These will print
an error message and exit with
 a non-zero status (to remind you that you haven't implemented them

properly). You must provide replacement versions of these.

The patch command is more fully implemented. See Patching for
 more information.

Patching
ots-build provides a default patch command for patching a source
 distribution before it is configure. This
can be changed by redefining
 the otsb_cmd_patch function. Patching is dependent upon the existence

of the patch file specified via the patchfile global variable.

A working version of patch is required (Solaris' version is by
 definition broken). By default the version of
patch in the user's
 path is used; an alternative may be specified with the --patch-cmd
 option.

The patch command is passed the options specified via the --patch-opts option.

If the applypatch command is available it is used to drive patch, e.g.

 applypatch -patch "patch -p0 -N -s" $patchfile

Logging
If logging is turned on via the --log or --logsingle options,
 the output of each command is logged.

--log logs each command to a separate file, pfxcmd.log, where pfx is a prefix specified by --logpfx.
This defaults to otsb_, so that it does not interfere with any log files created by
 the package (such as
config.log, etc.).

--logsingle sends the output from all commands to a single file, pfx.log, where pfx is the value of the
--logpfx option, with
 any trailing underscore removed.

When logging is turned on, by default no output is sent to the terminal.
 To log to the terminal as well,
specify --logconsole.

Defaults for the variables associated with these options may set via the otsbv_set function before
calling otsb_init.

Errors
If a command function returns a non-zero value ots-build will exit
 with an error. Typically it is up to the
writer of that function to
 ensure that an error will cause a non-zero return. That can be a
 pain. ots-build

ots-build.5

Page 10

provides a simple interface to the bash error
 trapping system which will ensure that if any command
executed within
 a command function exits with an error it will be caught and ots-build will be notified.

The otsb_trap_err command is used to manage the trap.

To engage or disengage the error trap for all command functions, use

 otsb_trap_err functions on
 otsb_trap_err functions off

This sets the default state when a command function is invoked. If
 this is invoked within a
command function it will change the state
 immediately.

To engage or disengage the error trap immediately

 otsb_trap_err on
 otsb_trap_err off

These turn the system on and off immediately. If invoked within
 a command function, the trap
state will return to off after the
 function returns.

To reset the state to that specified for command functions

 otsb_trap_err functions reset

This is only valid within a command function and resets the state to
 the default state specified by
the last otsb_trap_err functions
 setting.

FUNCTIONS
otsb_add_option

 otsb_add_option $type $name "$help"

Add an option of the given type (scalar, bool, array),
 name, and help string.

otsb_add_dumpvar

 otsb_add_dumpvar $var_name

Add the named variable to the list of variables output by the dump command. Option variables are
automatically added to the
 list.

otsb_append_path

 otsb_append_path $path_var_name $path1 $path2 ...

Append the specified path(s) to the path variable with the given
 name. A path variable's value is a
colon separated list of paths. For
 example,

 foo=a:b:c:d
 otsb_append_path foo e f g h

results in

 foo=a:b:c:d:e:f:g:h

otsb_assert_has_command

 otsb_assert_has_command $cmd1 $cmd2

ots-build.5

Page 11

Checks if the passed commands are in the user's path. If not it
 exits with an error message via
otsb_die.

otsb_cleanup

This function is called when the script exits and performs any
 necessary cleanup. By default it
does nothing. You should redefine
 it if you need it.

otsb_die

 otsb_die $message

Print the message to the standard error stream using a standard format
 and exit with a non-zero
status code.

-item otsb_error

 otsb_error $message

Output the message to the standard error stream using a standard
 format.

otsb_help

 otsb_help cmd cmd_name "cmd help string"
 otsb_help option option_name "option helpstring"

Change the help string of an existing option.

The second argument is either cmd or c<option> indicating what
 element the help string is for. For
example, here's how the default
 help string for the --exec-prefix option is specified:

 otsb_help option exec-prefix \
 "install architecture-dependent files here"

otsb_hook_push_back

 otsb_hook_push_back hook_name code

Push the code onto the back of the execution queue of the named hook.

otsb_hook_push_front

 otsb_hook_push_front hook_name code

Push the code onto the front of the execution queue of the named hook.

otsb_init

 otsb_init

Initializes the ots-build library.

otsb_is_boolean

 otsb_is_boolean $value

Returns true if the value is a boolean recognized by either otsb_is_true
 or otsb_is_false.

otsb_is_set

 otsb_is_set variable_name

Returns true if the variable has been set.

ots-build.5

Page 12

otsb_is_true

otsb_is_false

 otsb_is_true $value
 otsb_is_false $value

These returns true if the passed value matches what ots-build
 understands as true or false:

 true: the strings 'true' or 'on', or a non-zero number
 false: the strings 'false' or 'off', or zero

Any other values will return false.

otsb_options

 otsb_options "$@"
 otsb_options "$my_options_from_somewhere_else"

otsb_options parses the passed tokens for options and commands. It
 places values for passed
options in variables of the same name and
 places the requested commands in the
otsb_req_cmds variable. See Parsing the Command Line for more information.

Default values for options may be specified by setting the appropriate
 option variables before or
after calling otsb_options.

otsb_pkg

This function returns the package name and version (as a single
 string). It defaults to

 otsb_pkg () { echo $(basename $(pwd)); }

otsb_pkg_name

This function determines the name of the package and prints it to
 the standard output stream. It is
used to generate the value of the package_name variable. The default definition is

 otsb_pkg_version () { echo ${package%%-*} ; }

It may be overriden (before calling ots_set_build_variables). When
 called, the package
variable will have been set.

otsb_pkg_version

This function determines the version of the package and prints it to
 the standard output stream. It
is used to generate the value of the package_version variable. The default definition is

 otsb_pkg_version () { echo ${package##*-} ; }

It may be overriden (before calling ots_set_build_variables). When
 called, the package
variable will have been set.

otsb_prepend_path

 otsb_prepend_path $path_var_name $path1 $path2 ...

Prepend the specified path(s) to the path variable with the given
 name. A path variable's value is a
colon separated list of paths. For
 example,

 foo=a:b:c:d
 otsb_prepend_path foo e f g h

ots-build.5

Page 13

results in

 foo=e:f:g:h:a:b:c:d

otsb_run_cmds

This executes the build commands listed in the otsb_req_cmds
 variable, which is filled in by
otsb_options. The commands are run
 in the order in which they were specified, not the order
listed in otsb_commands. Do not invoke this command more than once.

If a command does not return a successful exit status code, the
 subsequent commands are not
run and otsb_run_cmds returns the exit
 status code of the failing command.

otsb_set

 otsb_set variable value

If the named (scalar!) variable has not been set, assign it the
 specified value:

 otsb_set prefix "a prefix is here"

In most cases this is the preferred way of setting a variable's value,
 as it allows using environment
variables to specify default values.

For example, if the build script is run in an environment with the
 environment variable prefix set:

 prefix=/my/prefix /imports/package/build all

then setting the default value of prefix via

 [...]
 prefix=/a/default/value
 otsb_options "$@"

will ignore the environment, while

 [...]
 otsb_set prefix /a/default/value
 otsb_options "$@"

will not.

otsb_setarr

 otsb_set variable value1 value2 ...

If the named (array!) variable has not been set, assign it the
 specified value:

 otsb_set config_opts --do-this --do-that

will do the equivalent of

 config_opts=(--do-this --do-that)

if config_opts is empty.

otsbv_set

 otsbv_set variable value

Similar to otsb_set, but used only for option variables provided by ots-build.

 otsbv_set log true

ots-build.5

Page 14

otsb_set_build_variables

This function is called after all invocations of otsb_options. It
 generates important build
variables; see Setting build variables.

otsb_trap_err

See the Errors section.

VARIABLES
The following variables are important to ots-build. Be careful that
 you do not inadvertently use them in a
different context.

otsb_commands

An array containing the available commands, in the order that they
 should be invoked.

otsb_req_cmds

An array containing the commands requested on the command line.

otsb_options_bools

An array containing a listing of boolean options.

otsb_options_scalars

An array containing a listing of options taking a single value.

otsb_options_arrays

An array containing a listing of options which may be specified
 multiple times, with each value
appended to an array.

otsb_version

The version of the ots-build library.

otsbv_import_root

See Setting build variables

package

The name of the package, including the version number, derived from
 the directory that the build
script is run in.

patchfile

The (optional) file containing the patch to apply to the source
 directory, derived from the package
name and the directory containing
 the build script.

version

The package version, determined from the package name.

log

A boolean indicating whether or not logging is enabled.

logpfx

The prefix appended to the command name to create a name for
 the log file.

logsingle

A boolean indicating that all logs should go to a single file.

ots-build.5

Page 15

logconsole

A boolean indicating that logging should be sent to the
 console as well as to the log files.

COPYRIGHT AND LICENSE
Copyright (C) 2010 Smithsonian Astrophysical Observatory

This file is part of ots-build.

ots-build is free software: you can redistribute it and/or modify
 it under the terms of the GNU General
Public License as published by
 the Free Software Foundation, either version 3 of the License, or (at
 your
option) any later version.

This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without
even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
 along with this program. If not, see
http://www.gnu.org/licenses/.

AUTHOR
Diab Jerius <djerius@cfa.harvard.edu>

