suplib

Edition 1.5.0, for version 1.5.0
29 July 2010

Diab Jerius

See Chapter 1 [Copying], page 1 for information for full details. Except where otherwise
stated, the following copyright applies:

Copyright () 2006 Smithsonian Institution

suplib is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

suplib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA

Table of Contents

1 Copyingooviiii 1
2 Introduction............... 3
3 Rangesof numbers............................. 5
3.1 rangef pParse 5)
3.2 TANZE_PEITOT . ..ttt ettt ettt et e e e et 7
3.3 rangef_del.... ... 9
34 rangef in. ... 9
3.5 rangef mew 10
3.6 TANZELPATSE . ..\ttt 11
3.7 rangel_count 13
3.8 rangel del....... .. 13
3.9 rangel dump......... 14
310 rangel mew. 15
311 rangel mext 15
3.12 rangel minmax i 16
3.13 rangel_rep-maxval 17
3.14 rangel_rep_minval....... 17
3.15 rangel_rep_val 18
3.16 rangelreset. 19
4 Strings and tokens......................... 21
N v o 10§ o 21
4.2 SEr_JOIM .ot 21
4.3 SET_PIUNE . .ottt e 22
1) o YU 22
4.5 strotokent. ... 23
4.6 Str_tokenize 24
4.7 str_tokenize_free 25
4.8 St tOKQ. o 26
4.9 strotokqorestore. 28
410 strotokqent ... 28
4.11 strotokbgenize 29
4.12 str_tokbqenize_free........ 31
413 strotokbq ..o 31
4.14 strotokbqg-init.o 33
4.15 strotokbgofree.o 34
4.16 str_tokbqg.restore 34
4.17 strotokbgent ... 35
418 Strotrim. ..o e 36
419 SErfTUNC. ..ot 37

i
4.20 strodtokent 37
4.21 strodtoksplit 38
4,22 SET_VATSCAI . o vttt ettt ettt ettt e e e e e 39
423 Strointerp 40
4.24 tokmatch ... 41
425 BOKCIID o 42
4.26 tOKGSPLL . .« oot 43
427 toksplit ..o 43
428 UDESCADPE . « o ettt ettt e et 44
429 UDQUOTE . o 45
5 Parsing Keyword_value pairs................. 47
5.1 keyval st.o 47
5.2 keyval_perror 50
5.3 keyval_cimp 51
6 Timing processes..................cccoiiii.... 53
6.1 clearTime. 53
6.2 startTime.o 53
6.3 elapsedTime 54
6.4 currentTime 54
6.5 InCTime.o e 55
6.6 diffTime ... 56
6.7 stringTime. 56
7 I/Ohandling.............. 59
T1 fget_TeCNeW ..ottt 59
7.2 fget_rec_delete 59
7.3 fget_rec_read.o i 60
8 ¢y N~ S 61
7.5 fget_rec_append....... ..o 62
8 File/Directory processing..................... 65
8.1 DASE_MAME . . .ttt ettt ettt 65
8.2 searchpath....... ... 65
9 Routines helpful for Debugging 67
9.1 debug_inito 67
9.2 dbflag. ..o 67
0.3 il 68
9.4 hexdUump ...t 69
10 Handling units 71
10.1 Setting up the structures............ o i 71
10.2 UNIES_PATSE « o e vt 72

10.3 UnItS_CVh .ot 73

suplib

11 List manipulation 75
11.1 bnd_bsearch e 75
11.2 partition.ttt e 76

12 1D and 2D Image manipulation............. 79
121 ave_dev_erT . ..o 79
12,2 center_variter........... ... 80
12,3 welghtpos. ... 82
12,4 WEVAT o 83

13 Statistical Calculations 85
13,1 ST . .« oo e 85
13.2 gsmirn2. 86
13.3 steale. ..o 87
13.4 KOIMOGOTOV . ..\ttt e 89

iii

Chapter 1: Copying

1 Copying

Except where otherwise noted, the following copyright applies:

The software described by this manual is copyright (©) 2006 Smithsonian Insti-
tution. All rights reserved.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

Chapter 2: Introduction 3

2 Introduction

suplib is a collection of various routines which are of general interest. It is grouped by
topic into several sub-libraries, each with its own header file.

Chapter 3: Ranges of numbers 5

3 Ranges of numbers

Often one is faced with dealing with sets, or ranges of numbers. They can be a pain to
parse, as well as to iterate over.

The rangel family of routines work on ranges of integers. Parsing of the ranges is done
with rangel_parse. Iterating through them is done with rangel_next and rangel_reset.
There are several routines for manipulating the minimum and maximum range values.

The rangef routines work on ranges of real numbers. Parsing of range specifications is
done with rangef_parse. To determine if a real is within a range list, use rangef_in.

Errors are handled via range_perror.

3.1 rangef_parse

parse a list of floating point ranges

Synopsis

#include <suplib/range.h>

RangeErr rangef_parse(
RangeFList **rfl,
char *range_spec,
RangeOpts opts,
double minval,
double maxval,
long *where

)

Parameters

RangeFList **rfl
returned list of ranges

char *range_spec

string containing range to parse
RangeOpts opts

range options

Possible values for a RangeOpts are as follows: Range_SORT, Range_
MERGE, Range _INCOMPLETE, Range _UNSIGNED

double minval
replacement value for incomplete start

double maxval
replacement value for incomplete end

6 suplib

long *where
position in string where error occurred

Description

rangef_parse translate a list of ranges of the form "rl,r2,r3,r4" into start-end pairs. a
range has the format:

[start]{ “:> | ‘C | <) | ¢ }[end]

where start and end are optional limits on the range.

Returns

It returns a code indicating whether an error ocurred. (See ‘suplib/range.h’ for the
possible errors, and codes. It also returns the location of the error in the range specification
via the passed where variable.

Possible values for a RangeErr are as follows:

RangeErr_0OK
no error

RangeErr_NOMEM
out of memory

RangeErr_INCOMPLETE
incomplete range

RangeErr_ERANGE
number out of bounds

RangeErr_ILLNUM
not a number

RangeErr_NEGNUM
negative number

RangeErr_OFLOWSTART
overflow of start value

RangeErr_NONPOSCOUNT
non-positive count

RangeErr_OFLOWEND
overflow of end value

RangeErr_INTERNAL
internal error

RangeErr_ORDER
start greater than end

Chapter 3: Ranges of numbers 7

RangeErr_EMPTY
float range is empty set

RangeErr_ MAXERR

The Range Operators Are As Follows

< range from start to end, inclusive of both.

¢ range from start to end, exclusive of end.
)’ range from start to end, exclusive of start.

(~

range from start to end, exclusive of both.

The handling of the ranges depends upon the flags set in the opts arguement. opts is
set to the logical OR of zero or more of the following values

Range_SORT
The resultant ranges will be sorted in ascending order by their lower bound

Range_MERGE
Adjacent ranges will be merged, if possible. This implies Range_SORT.

Range_INCOMPLETE
If set, incomplete ranges, i.e., those without an explicit start or end value, are
accepted. In this case, implied starts are set to the value of the passed minval
argument, while implied ends are set to the value of the maxval argument.

rangef _parse creates a RangeFList object and returns it via the rfl parameter.

Author

Diab Jerius

3.2 range_perror

output an error message associated with a RangeERR

Synopsis

#include <suplib/range.h>

void range_perror(
FILE *fout,
RangeErr error,
const char *spec,
long where

Parameters

FILE *fout
where to print the error message

RangeErr error
which error to print

Possible values for a RangeErr are as follows:

RangeErr_OK
no error

RangeErr_NOMEM
out of memory

RangeErr_INCOMPLETE
incomplete range

RangeErr_ERANGE
number out of bounds

RangeErr_ILLNUM
not a number

RangeErr_ NEGNUM
negative number

RangeErr_OFLOWSTART
overflow of start value

RangeErr_NONPOSCOUNT
non-positive count

RangeErr_OFLOWEND
overflow of end value

RangeErr_ INTERNAL
internal error

RangeErr_ORDER
start greater than end

RangeErr_ EMPTY
float range is empty set
RangeErr_MAXERR

const char *spec
the specification which caused the error

long where
where in the spec the error ocurred

suplib

Chapter 3: Ranges of numbers 9

Description

Error messages are returned by the range routines via an integer code of type RangeERR.
This routine acts much like the system perror routine. It takes as input the output stream,
the error code, the range specification passed to the range parsing routines, and the where
argument returned by those routines. It prints an error message to the passed output

stream.

Author

Diab Jerius

3.3 rangef_del

destroy a RangeFList object.

Synopsis

#include <suplib/range.h>
RangeFList *rangef_del(RangeFList *rl);

Parameters

RangeFList *rl
Not Documented.

Description

This routine frees all memory associated with a RangeFList object.

Returns

It returns NULL.

Author

Diab Jerius

3.4 rangef_in

determine if a number is within a list of ranges

Synopsis

#include <suplib/range.h>

int rangef_in(
RangeFList *rl,

10 suplib

double t
)

Parameters

RangeFList *rl
Not Documented.

double t Not Documented.

Description

rangef_in determines if a passed number is encompassed by one of the ranges in a passed

RangeFList.

Returns

It returns non-zero if the number is within the list of ranges, zero if not.

Author

Diab Jerius

3.5 rangef_new

create a new RangeFList

Synopsis
#include <suplib/range.h>
RangeFList *rangef _new(size_t nr);

Parameters

size_t nr Not Documented.

Description

RangeFList objects are used to contain a list of integral ranges. rangel_new creates such

an object for a given number of ranges.

Returns

It returns a pointer to a RangeFList object upon success, NULL if it ran out of memory.

Author

Diab Jerius

Chapter 3: Ranges of numbers 11

3.6 rangel_parse

parse a list of integral ranges

Synopsis

#include <suplib/range.h>

RangeErr rangel_parse(
RangelList **rll,
char *range_spec,
RangeOpts opts,
long minval,
long maxval,
long *where

)

Parameters

RangelList **rll
returned range list

char *range_spec
string containing range to parse

RangeOpts opts

range options

Possible values for a RangeOpts are as follows: Range_SORT, Range_
MERGE, Range_INCOMPLETE, Range _UNSIGNED

long minval
minimum value for incomplete start

long maxval
maximum value for incomplete end

long *where
position in string where error occurred

Description
rangel_parse translates a list of ranges of the form
ril{,| }r20{,| }r3]]...

into start-end pairs. The handling of the ranges depends upon the flags set in the opts
arguement. opts is set to the logical OR of zero or more of the following values

Range_SORT
The resultant ranges will be sorted in ascending order by their lower bound

12 suplib

Range_MERGE
Adjacent ranges will be merged, if possible. This implies Range_SORT.

Range_ INCOMPLETE
If set, incomplete ranges, i.e., those without an explicit start or end value, are
accepted. In this case, implied starts are set to the value of the passed minval
argument, while implied ends are set to the value of the maxval argument.

Range_UNSIGNED
Only unsigned integers are allowed in the ranges.

Returns

It returns a code indicating whether an error ocurred. See ‘suplib/range.h’ for the possible
errors and codes. It also returns the location of the error in the range specification via the
passed where variable.

Possible values for a RangeErr are as follows:

RangeErr_OK
no error

RangeErr_NOMEM
out of memory

RangeErr_INCOMPLETE
incomplete range

RangeErr_ERANGE
number out of bounds

RangeErr_ILLNUM
not a number

RangeErr_NEGNUM
negative number

RangeErr_OFLOWSTART
overflow of start value

RangeErr_NONPOSCOUNT
non-positive count

RangeErr_OFLOWEND
overflow of end value

RangeErr_ INTERNAL
internal error

RangeErr_ORDER
start greater than end

RangeErr_EMPTY
float range is empty set

Chapter 3: Ranges of numbers 13

RangeErr_MAXERR

A Range Has The Format

[start]{‘:’}[end]
[start]{‘/’}count

where start and end are optional limits on the range, and count specifies the number of
elements in a range. In the first form, if start or end is missing, minval and maxval are used
appropriately (if the incomplete range flag is set). In the second form, if start is missing,
the range starts at 1 if no previous range was specified, or directly follows the end of the
previous range.

rangel_parse creates a RangeLList object and returns it via the rll parameter.

Author

Diab Jerius

3.7 rangel_count

determine the number of elements in a range list

Synopsis

#include <suplib/range.h>

unsigned long rangel_count(RangeLList *rl);

Parameters

RangelList *rl
the range list to count

Description

rangel_count counts the number of elements in each range of a range list, returning the

grand total.

Returns

It returns the number of elements in the range list.

Author

Diab Jerius

3.8 rangel_del

destroy a RangeLList object.

14 suplib

Synopsis

#include <suplib/range.h>
RangelLList *rangel_del(RangeLList *rl);

Parameters

RangelList *rl
the RangeLList object to delete

Description

This routine frees all memory associated with a RangeLList object.

Returns

It returns NULL.

Author

Diab Jerius

3.9 rangel_dump
pretty print a RangeLList

Synopsis

#include <suplib/range.h>

void rangel_dump(
FILE *fout,
RangelList *rl
)3

Parameters

FILE *fout
where to print

RangeLList *rl
the list to print

Description

rangel_dump prints out a simple dump of a RangeLList to the passed output stream.

Author

Diab Jerius

Chapter 3: Ranges of numbers 15

3.10 rangel_new

create a new RangelList

Synopsis

#include <suplib/range.h>

RangeLList *rangel_new(size_t nr);

Parameters

size_t nr the number of ranges to allocate space for

Description

RangeLList objects are used to contain a list of integral ranges. rangel_new creates such

an object for a given number of ranges.

Returns

It returns a pointer to a RangeLList object upon success, NULL if it ran out of memory.

Author

Diab Jerius

3.11 rangel_next

get the next element in the range list

Synopsis
#include <suplib/range.h>
int rangel_next(

RangelList *rl,
long *elem

)

Parameters

RangelList *rl
the range to iterate over

long *elem
the returned element

16 suplib

Description

rangel_next serves as an iterator over the passed list of ranges, returning the next element
in the list. To reset the iterator, Section 3.16 [rangel reset]|, page 19. The element is
returned via the elem argument.

Returns

It returns ‘1’ if there is an element left, ‘0’ if it has reached the end of the range list.

Author

Diab Jerius

3.12 rangel_minmax
get the minimum and maximum values in a range list

Synopsis

#include <suplib/range.h>

int rangel_minmax(
RangelList *rl,
long *min,
long *max
)3
Parameters

RangelList *rl
the range in question

ong *min e minimum range value
1 * th 1

long *max the maximum range value

Description

rangel_minmax determines the minimum and maximum values in a range list, storing them

in the passed min and max arguments.

Returns

It returns 1 upon success, 0 if the range was empty.

Author

Diab Jerius

Chapter 3: Ranges of numbers 17

3.13 rangel_rep_maxval

replace matching range maximum values

Synopsis
#include <suplib/range.h>
void rangel_rep_maxval(
RangelList *rl,
long maxval,

long repval

)

Parameters

RangelList *rl
the list to scan

long maxval
the maximum value to match

long repval
the replacement maximum value

Description

rangel_rep_maxval replaces the maximum value for those ranges whose maximum values

match the passed one with another value.

Author

Diab Jerius

3.14 rangel_rep_minval

replace matching range minimum values

Synopsis

#include <suplib/range.h>

void rangel_rep_minval(
RangelList *rl,
long minval,
long repval

)

18 suplib

Parameters

RangelList *rl
the list to scan

long minval
the minimum value to match

long repval

the replacement minimum value

Description

rangel_rep_minval replaces the minimum value for those ranges whose minimum values

match the passed one with another value.

Author

Diab Jerius

3.15 rangel_rep_val

replace matching range minimum and maximum values

Synopsis

#include <suplib/range.h>

void rangel_rep_val(
RangellList *rl,
long minval,
long maxval,
long minrepval,
long maxrepval

);
Parameters

RangelList *rl
the list to edit

long minval
the minimum value to match

long maxval
the maximum value to match

long minrepval
the replacement minimum value

long maxrepval
the replacement maximum value

Chapter 3: Ranges of numbers 19

Description

rangel_rep_maxval replaces the maximum value for those ranges whose maximum values
match the passed one with another value. It also replaces the minimum value of the ranges

which match the passed minimum value with another value.

Author

Diab Jerius

3.16 rangel_reset
reset the RangeLList internal state

Synopsis

#include <suplib/range.h>
void rangel_reset(RangeLList *rl);

Parameters

RangelList *rl
the range list to reset

Description

The internal state of the passed RangeLList object is set so that the next call to Section 3.11
[rangel_next], page 15 will return the start of the first range.

Author

Diab Jerius

Chapter 4: Strings and tokens 21

4 Strings and tokens

4.1 str_dup

duplicate a string

Synopsis

#include <suplib/str.h>

char *str_dup(const char *string);

Parameters

const char *string
the string to duplicate

Description

str_dup makes a duplicate copy of a string, allocating space and copying the original into

the new space. If the passed pointer is NULL, it returns NULL.

Returns

Upon success, it returns a pointer to the duplicate string. The user is responsible for freeing

this memory. Upon failure (i.e., out of memory) it returns NULL

Author

Diab Jerius

4.2 str_join
concatenate strings with delimiters
Synopsis
#include <suplib/str.h>
char *str_join(

const char *delim,
size_t n,

)

22 suplib

Parameters

const char *delim
the inter-string delimiter, may be NULL

size_t n the number of strings

the strings

Description

str_join concatenates a list of strings, separated by the given delimiter. If any of the

passed pointers is NULL, it is ignored.

Returns

It returns a pointer to a newly allocated buffer containing the the concatenated string, NULL

if it couldn’t allocate the requisite memory. The caller is responsible for freeing the buffer.

4.3 str_prune

remove leading and trailing white space from a string

Synopsis

#include <suplib/str.h>
char *str_prune(char *str);

Parameters

char *str the string to modify

Description

str_prune removes leading and trailing white space from a string. It truncates the string at
the first trailing white space, then moves the string to the left, starting at the first non-white

space character. The input string is modified.

Returns

It returns the pointer which it was passed.

Author

Diab Jerius

4.4 str_rep

replaces all occurances of a character in a string with another

Chapter 4: Strings and tokens 23

Synopsis

#include <suplib/str.h>

char *str_rep(
char *str,
int c_old,
int c_new
);
Parameters

char *str the string to scan
int c_old the character to be replaced

int c_new the character to be inserted

Description

str_rep scans a string, replacing every occurance of a the specified character with another

Returns

It returns the pointer to the string which was passed.

Author
Diab Jerius

4.5 str_tokcnt

count the number of tokens in a string.

Synopsis
#include <suplib/str.h>
size_t str_tokcnt(

const char *string,
const char *delim

)

Parameters

const char *string
string to parse

const char *delim
the delimiters to use

24 suplib

Description

str_tokcnt determines the number of tokens which would be returned in the course of

calling the strtok function through completion. It does not change the passed string.

Returns

it returns the number of tokens in the string.

Author

Diab Jerius

4.6 str_tokenize

tokenize a string at specified delimiters

Synopsis

#include <suplib/str.h>

int str_tokenize(
char *string,
const char *delim,
char ***xstring_argv,
int skip,
int restore

)

Parameters

char *string
string to parse

const char *delim
the delimiters to use

char ***string_argv
to store the parsed tokens

int skip true if consecutive delimiters are treated as a single delimiter

int restore
true if str_tokq should restore the delimiter character from the
previous invocation

Description

This routine tokenizes the string using str_tokq. The invoking routine calls str_tokenize
once to parse all the tokens for a given delimiter. The tokens are stored in string_argv.

Chapter 4: Strings and tokens 25

if the restore argument is false, str_tokenize will allocate memory for each of the
tokens; otherwise it will return pointers to the locations in the original string.

The routine str_tokenize_free is provided to free the memory allocated by str_

tokenize

Returns

The number of tokens. The third argument, string_argv, contains the parsed tokens.

Errors

On error, str_tokenize returns 0 and sets errno accordingly. The following errors are
recognized:

EINVAL There were unbalanced quotes or the last character in the string was an escape
character (i.e., no character to escape).

ENOMEM A memory allocation failed

Author
Dan Nguyen

Diab Jerius

4.7 str_tokenize_free

free memory allocated by str_tokenize

Synopsis
#include <suplib/str.h>
void str_tokenize_free(
char **string_argv,

int restore

)

Parameters

char **string_argv
storage for the parsed tokens

int restore
same as passed to str_tokenize

26 suplib

Description

This routine frees the memory allocated by the str_tokenize. The user must call str_
tokenize_free with the same value for restore as was used when str_tokenize was in-

voked.

Returns
void

Author
Dan Nguyen

Diab Jerius

4.8 str_tokq

split a string at specified delimiters

Synopsis

#include <suplib/str.h>

char *str_tokq(
char *string,
const char *delim,
int skip,
int restore,
char *x*ptr,
char *dchar

)
Parameters

char *string
the string to parse

const char *delim
the set of characters that delimit tokens

int skip true if consecutive delimiters are treated as a single delimiter

int restore
true if str_tokq should restore the delimiter character from the
previous invocation

char **ptr
state information needed by str_tokq

char *dchar
state information needed by str_tokq

Chapter 4: Strings and tokens 27

Description

This routine works like strtok, except that it understands escaped characters (with ‘\’
as the escape character) and quoted strings. It also can be told not to skip over multiple
consecutive delimiter characters (e.g., if the delimiter is ¢,’, the string ",,a" will return three
tokens, the first two empty strings). Additionally str_tokq can be instructed to restore
the parsed string to its initial state (normally it sticks ‘\0’ where the delimiter characters
are).

The invoking routine calls str_tokq multiple times, once per token. The first call should
be made with string set to the address of the string to parse. On subsequent calls it should
be set to NULL. The delimiters may be changed on subsequent calls.

Each invocation of str_tokq returns a pointer to the next token. If no more tokens are
available, it returns NULL. If skip mode is on (the parameter skip is non-zero), an empty
string is considered to have no tokens. If skip mode is off, an empty string is considered to
have a single token.

If the parameter restore is non-zero, str_tokq will restore the delimiter character which
was replaced by a ‘\0’ on the previous call. Thus, to fully restore the string to its original
state, str_tokq must be invoked repeatedly until it returns a NULL.

Escaped characters are recognized anywhere in a string. Quotes need not be the first
character in a token (e.g., ‘foo" "bar’) will be treated as one token, and can be either single
(both forward and backwards) or double. To embed quotes in like-quoted strings, escape
them (e.g., ‘foo"\""bar’).

Unlike strtok, str_tokq is set up to allow concurrent use on multiple strings. To
accomplish this, all internal state information is kept in two user supplied locations. The
first (parameter ptr), is used by strtok to keep track of where it is in the string. The
second, dchar, contains the delimiter character that ended the token. Please note that
the invoking function must pass the addresses of these locations to str_tokq. Here’s some
sample code:

char *ptr, dchar, *tok;

tok = str_tokq(string, ",", O, 1, &ptr, &dchar);
while (tok)
{

. process tokens ...
tok = str_tokq(NULL, ",", 0, 1, &ptr, &dchar);
}

Errors

On error, str_tokq returns NULL and sets errno accordingly. The following errors are
recognized:

EINVAL There were unbalanced quotes or the last character in the string was an escape
character (i.e., no character to escape).

28 suplib

4.9 str_tokq_restore
restore string passed to str_tokq

Synopsis

#include <suplib/str.h>

char *str_tokq_restore(
char *ptr,
char dchar

)

Parameters

char *ptr state information returned by str_tokq

char dchar
state information returned by str_tokq

Description

str_tokq changes the scanned string as it processes it. If the restore flag passed to str_
tokq is set then the string will be restored if the str_tokq is called to completion. However,
sometimes it’s necessary to interrupt the parsing, and repeatedly calling the str_tokq to
restore the string is ridiculous.

This function restores the string.

Returns

It returns a pointer to the next character that str_tokq would have returned, except in the
case where the end of string was reached, in which case it will return a pointer to the end
of string character. This allows one to pass the pointer to another independent invocation

of str_tokgq, if, for example, continued parsing is to be done in another context.

Author

Diab Jerius

4.10 str_tokqcnt

count the number of tokens in a string

Synopsis

#include <suplib/str.h>

int str_tokqgcnt(
char *string,

Chapter 4: Strings and tokens 29

const char *delim,
int skip
);

Parameters

char *string
the string to parse

const char *delim
the set of characters that delimit tokens

int skip true if consecutive delimiters are treated as a single delimiter

Description

This routine counts the number of tokens in a string as would be returned by str_tokq. It
does change the input string, but restores it to its initial state upon completion. A constant

string (e.g., a statically declared string) should not be passed.

Returns

Upon success it returns the number of tokens in the string. On error it returns ‘-1’.

Author
Diab Jerius

4.11 str_tokbqgenize

tokenize a string at specified delimiters

Synopsis

#include <suplib/str.h>

int str_tokbgenize(
char *string,
char ***xstring_argv,
const char *delim,
const char *open_quote,
const char *close_quote,
char escape_char,
int actioms,
struct str_tokbgdata *tbqd,
int *error

30 suplib

Parameters

char *string
the string to parse

char **x*xstring_argv
to store the parsed tokens

const char *delim
the set of characters that delimit tokens

const char *open_quote
the set of characters that delimit opening quotes. e.g., ‘"> {[’

const char *close_quote
the set of matching characters that delimit closing quotes. These
must be in the same order as the opening characters in open_quote,
e‘g" i 7}] ?

char escape_char
the escape character

int actions
skip, restore, and escape modes

struct str_tokbgdata *tbqd
state information

int *error
returned error code

Description

This routine tokenizes the string using str_tokbg. The invoking routine calls
str_tokbgenize once to parse all the tokens for a given delimiter. The tokens are stored
in string_argv.

if the restore argument is false, str_tokbgenize will allocate memory for each of the
tokens; otherwise it will return pointers to the locations in the original string.

The routine str_tokbgenize_free is provided to free the memory allocated by str_

tokbgenize

Returns

The number of tokens. The third argument, string_argv, contains the parsed tokens.

Errors

On error, str_tokbgenize returns 0 and sets errno accordingly. The following errors are
recognized:

EINVAL There were unbalanced quotes or the last character in the string was an escape
character (i.e., no character to escape).

Chapter 4: Strings and tokens 31

ENOMEM A memory allocation failed

Author

Diab Jerius Dan Nguyen

4.12 str_tokbqgenize_free
free memory allocated by str_tokbgenize

Synopsis

#include <suplib/str.h>

void str_tokbgenize_free(
char **string_argv,
int action

)
Parameters

char **xstring_argv
storage for the parsed tokens

int action
same as passed to str_tokbgenize

Description

This routine frees the memory allocated by the str_tokbgenize. The user must call str_
tokbgenize_free with the same value for restore as was used when str_tokbgenize was

invoked.
Returns
void
Author

Diab Jerius Dan Nguyen

4.13 str_tokbq

split a quoted string at specified delimiters

Synopsis

#include <suplib/str.h>

char *str_tokbq(

32 suplib

char *string,

const char *delim,

const char *open_quote,
const char *close_quote,
char escape_char,

int actioms,

struct str_tokbqgdata *tbqd,
int *error

)

Parameters

char *string
the string to parse

const char *delim
the set of characters that delimit tokens

const char *open_quote
the set of characters that delimit opening quotes. e.g., ‘"’ {[’

const char *close_quote
the set of matching characters that delimit closing quotes. These
must be in the same order as the opening characters in open_quote,
e.g., ‘n 7}] ?

char escape_char
the escape character

int actions
skip, restore, and escape modes

struct str_tokbgdata *tbqd
state information

int *error
returned error code

Description

This routine works like strtok, except that it understands escaped characters and quoted
strings. It handles balanced quote characters (i.e. ‘[’ and ‘]1’). It does not handle nested
quotes.

It can collapse consecutive delimiter characters, or generate empty tokens. For example,
if the delimiter is ¢,’, parsing of the string ",,a" would return three tokens, the first two
empty strings. Additionally str_tokbqg can be instructed to restore the parsed string to its

initial state (normally it sticks ‘\0’ where the delimiter characters are).

str_tokbq is invoked multiple times, once per token. Unlike str_tok, str_tokbq stores
all of its state information externally, in a caller provided structure. This must be initialized

Chapter 4: Strings and tokens 33

with str_tokbq_init before the first call to str_tokbq. The contents are unique to each
parsed string.

Delimiters, quote characters, and the escape character may be changed between calls.

Each invocation of str_tokbq returns a pointer to the next token. If no more tokens
are available, it returns NULL. If skip mode is on an empty string is considered to have no
tokens. If skip mode is off, an empty string is considered to have a single token.

The actions flag is used to specify how to handle consecutive delimiters, string restora-
tion, and whether to recognize escape sequence. The following flags (which may be combined
with | are available:

STRTOK_ESCAPE
Recognize escape character sequences before quotes and delimiters. They are
ignored elsewhere. The escape character is given by the escape_char parame-
ter.

STRTOK_RESTORE str_tokbq replaces delimiter characters
in the passed string with ‘\0’ as it parses it. This flag directs str_tokbq to
restore the character from the previous call. To fully restore the string to
its original state, the caller must either repeatedly invoke str_tokbq until it
returns a NULL or invoke the str_tokbq_restore function.

STRTOK_SKIP
If set, this indicates that consecutive delimiters are collapsed ("skipped").

Quotes need not be the first character in a token (e.g., ‘foo" "bar’) will be treated as
one token, and can be either single (both forward and backwards) or double. To embed

quotes in like-quoted strings, escape them (e.g., ‘foo"\""bar’).

Errors

On error, str_tokbq returns NULL and stores an error code in *error. The following errors
are recognized:

EINVAL There were unbalanced quotes.

4.14 str_tokbq_init

initialize str_tokbq state information

Synopsis

#include <suplib/str.h>

struct str_tokbgdata *str_tokbq_init(struct str_tokbgdata *tbqd);

34 suplib

Parameters

struct str_tokbgdata *tbqd
Not Documented.

Description

str_tokbq_init is called before the first call to str_tokbq to initialize its state information.

Returns

It returns the pased structure pointer

Author

Diab Jerius

4.15 str_tokbq_free

free str_tokbq state information
Synopsis
#include <suplib/str.h>
void str_tokbq_free(struct str_tokbqdata *tbgd) ;

Parameters

struct str_tokbgdata *tbqd
Not Documented.

Description

str_tokbq_free should be called if the full set of calls to str_tokbq (e.g. until it returns
NULL is interrupted and will not be completed.

Author

Diab Jerius

4.16 str_tokbq_restore

restore string passed to str_tokbq

Synopsis

#include <suplib/str.h>

char *str_tokbq_restore(struct str_tokbgdata *tqbd);

Chapter 4: Strings and tokens 35

Parameters

struct str_tokbgdata *tqbd
Not Documented.

Description

str_tokbq changes the scanned string as it processes it. If the restore flag passed to
str_tokbgq is set then the string will be restored if the str_tokbq is called to completion.
However, sometimes it’s necessary to interrupt the parsing, and repeatedly calling the str_
tokbq to restore the string is ridiculous.

This function restores the string.

Returns

It returns a pointer to the next character that str_tokbq would have returned, except in
the case where the end of string was reached, in which case it will return a pointer to the end
of string character. This allows one to pass the pointer to another independent invocation

of str_tokbq, if, for example, continued parsing is to be done in another context.

Author

Diab Jerius

4.17 str_tokbqcnt

count the number of tokens in a string

Synopsis

#include <suplib/str.h>

int str_tokbgcnt (
char *string,
const char *delim,
const char *open_quote,
const char *close_quote,
char escape_char,
int actioms,
struct str_tokbqgdata *tbqd,
int *error

)

Parameters

char *string
the string to parse

36

suplib

const char *delim
the set of characters that delimit tokens

const char *open_quote
the set of characters that delimit opening quotes. e.g., ‘"> {[’

const char *close_quote
the set of matching characters that delimit closing quotes. These
must be in the same order as the opening characters in open_quote,
e‘g.’ ‘i 7}] ?

char escape_char
the escape character

int actions
skip, restore, and escape modes

struct str_tokbgdata *tbqd
state information

int *error
returned error code

Description

This routine counts the number of tokens in a string as would be returned by str_tokbqg. It

does change the input string, but restores it to its initial state upon completion. A constant

string (e.g., a statically declared string) should not be passed.

Returns

Upon success it returns the number of tokens in the string. On error it returns ‘-1’.

Author

Diab Jerius

4.18 str_trim

removes white space from front of a string

Synopsis

#include <suplib/str.h>

char *str_trim(char *str);

Parameters

char *str the string to trim

Chapter 4: Strings and tokens 37

Description

str_strim removes white space from the front of a string by shifting the string to the left,

starting at the first non-white space character. It works in place, altering the passed string.

Returns

It returns the pointer which it was passed

Author

Diab Jerius

4.19 str_trunc

truncate white space at the end of a string
Synopsis

#include <suplib/str.h>

char *str_trunc(char *string);

Parameters

char *string
the string to truncate

Description

str_trunc truncates white space at the end of a string by writing a ‘\0’ at the appropriate

position in the string. It alters the passed string.

Returns

It returns the pointer which it was passed.

Author

Diab Jerius

4.20 str_dtokcnt

count the number of tokens in a string.

Synopsis

#include <suplib/str.h>

size_t str_dtokcnt(

38 suplib

const char *string,
char *delim

)

Parameters

const char *string
string to parse

char *delim

the delimiters to use

Description

str_dtokcnt parses a string in the same manner as str_dtoksplit and returns the number

of tokens. It does not alter the string.

Returns

It returns the number of tokens in the string.

Author

Diab Jerius

4.21 str_dtoksplit

split a string into tokens.

Synopsis

#include <suplib/str.h>

size_t str_dtoksplit(
char *str,
char *tokl[],
const char *delim,
int ntok

)

Parameters

char *str the string to split up

char *tok[]
the array to stick

const char *delim
the delimiters to split on

int ntok the maximum number of tokens to read

Chapter 4: Strings and tokens 39

Description

This routine splits a string into a series of tokens. Unlike the system library function strtok,
each instance of a delimiter implies a token. In strtok, sequential delimiters are collapsed
into one. This function allows one to have empty tokens. It fills a caller provided array
with pointers to the tokens. The caller may specify a maximum number of tokens to read.
Note that an empty string corresponds to a single, empty, token.

The passed string is modified (end of string characters are inserted where necessary).

Returns

It returns the number of tokens read.

Author

Diab Jerius

4.22 str_varscan

scan a string for $VAR or ${VAR}

Synopsis

#include <suplib/str.h>

int str_varscan(
const char *string,
void (*callback) (const char *,const char *,const char *,const char *,void *),J}
void *udata,
const char *xerrptr

)
Parameters

const char *string
the string to process

void (*callback) (const char *,const char *,const char *,const
char *,void *)

callback

void *udata
extra data to pass to the callback routine

const char **errptr
place to store a pointer to a bad spot in the string
Description

str_varscan scans a strings for substrings of the form ${VAR} or $VAR. VAR’s first character
must be in the set [a-zA-Z_], with the remaining characters being in the set [a-zA-Z0-9_].

40 suplib

When such a string is found, the passed callback function is called with the addresses of
the first and last characters of the entire substring, as well as the first and last characters
in VAR.

Returns
Upon success, it returns 0; Upon error, *errptr is set to point the the character that evoked

the error, and one of the following is returned:

EDOM There was an unbalanced ‘{’

Author

Diab Jerius

4.23 str_interp

interpolates environmental variables into a string

Synopsis

#include <suplib/str.h>

char *str_interp(
const char *text,
int keep_undef,
const char **ustart,
const char **uend,
int *error

)

Parameters

const char *text
the text to be interpolated into

int keep_undef
if true, undefined variables are left in the text. if false, they are
removed

const char **ustart
if not NULL, set to the start of the undefined variable name

const char **uend
if not NULL, set to the end of the undefined variable name

int *error
error code

Chapter 4: Strings and tokens 41

Description

This routine scans a string for embedded environmental variables and returns a pointer to
a copy of the string with the interpolated values. The user is responsible for freeing the
new string.

The input string is scanned left to right for substrings of the form ${VAR} or $VAR. VAR
must begin with an alphabet character or the ‘_’ character. The remaining characters must

be alphabetic, numeric, or the ‘_’ character.

Returns

Upon success a pointer to the interpolated string is returned and *error is set to 0. The
user is responsible for freeing the memory pointed to by the returned string. If keep_undef
was set and there was an undefined variable, then *errp is set to EFAULT and *ustart
and *uend point at the first and last characters in the variable name. If multiple variables
are undefined, they will point to the first undefined variable name. Upon error, NULL is
returned and *errp is set to one of the following

EDOM There was an unbalanced ‘{’. *ustart is set
to point the the character that evoked the error. *uend is undefined.

ENOMEM A memory allocation failed.

Author

Diab Jerius

4.24 tokmatch

match a string to a list of tokens

Synopsis

#include <suplib/str.h>

int tokmatch(
const char *token,
const TokList *toklist
)

Parameters

const char *xtoken
Not Documented.

const TokList *toklist
Not Documented.

42 suplib

Description

tokmatch compares a string to a list of tokens in a user provided TokList. The TokList

should be sorted alphabetically by name.

Returns

It returns the id of the matched token, ‘-1’ otherwise. Note that this restricts the values
of id.

Author

Diab Jerius

4.25 tokcmp

compare two tokens by name

Synopsis

#include <suplib/str.h>

int tokcmp(
const void *tokl,
const void *tok2
)
Parameters

const void *tok1l
Not Documented.

const void *tok2
Not Documented.

Description

tokcmp compares two TokListToken’s by name. It is suitable for use by bsearch or gsort.

Returns

It returns ‘-1’ if the first token’s name is alphabetically first, ‘0’ if they have the same name,

and ‘1’ if the first token’s name follows the second, alphabetically.

Author

Diab Jerius

Chapter 4: Strings and tokens 43

4.26 tokqsplit

split a string into tokens

Synopsis
#include <suplib/str.h>
int tokgsplit(
char *str,
char *tokl[],
const char *delim,
int ntok,

int split
)3

Parameters

char *str the string to split up

char *tok[]
the array that will receive the tokens

const char *delim
the delimiters to split on

int ntok the maximum number of tokens to read

int split the strtokq split argument

Description

tokqgsplit splits a string into a series of tokens using str_tokq. It fills a caller provided
array with pointers to the tokens. The caller should specify the maximum number of tokens

to read.

Returns

It returns the actual number of tokens in the string, which may differ (either greater and

lesser) than the number requested. Upon error, it returns ‘-1’.

Author

Diab Jerius

4.27 toksplit

split a string into tokens

44 suplib

Synopsis
#include <suplib/str.h>
int toksplit(
char *str,
char *tokl[],

const char *delim,
int ntok

)

Parameters

char *str the string to split up

char *tok[]
the array to stick

const char *delim
the delimiters to split on

int ntok the maximum number of tokens to read

Description

toksplit splits a string into a series of tokens using strtok. It fills a caller provided array
with pointers to the tokens. The caller should specify the maximum number of tokens to

read.

Returns

It returns the actual number of tokens in the string, which may differ (either greater and

lesser) than the number requested.

Author

Diab Jerius

4.28 unescape

replace escaped characters with their true values

Synopsis

#include <suplib/str.h>

char *unescape(char *string);

Chapter 4: Strings and tokens 45

Parameters

char *string
the string to unescape

Description

unescape replaces escaped characters with their true values. The escape prefix is the
character ‘\’. It recognizes the following special characters: ‘\t’, ‘\n’. All other escaped
characters are replaced by the character (i.e., ‘\g’ is turned into ‘g’). It makes the changes
in-place.

Returns

It returns a pointer to the original string upon success, NULL if the escape prefix occurred

without a character to escape.

Author

Diab Jerius

4.29 unquote
remove quotes from a string

Synopsis

#include <suplib/str.h>

char *unquote(char *string);

Parameters

char *string
the string to unquote

Description

unquote removes pairs of quotes from a string. The first quote need not be at the beginning
of the string. It makes the changes in-place. For example, ‘foo" "bar’ is turned into ‘foo
bar’, just like in a UNIX shell. It can deal with either single (forward or backward) or

double quotes, and understands escaped characters (with ‘\’ as the escape prefix).

Returns

It returns a pointer to the original string upon success, NULL if the quotes were unbalanced

or an escape prefix occurred without a character to escape.

46 suplib

Author

Diab Jerius

Chapter 5: Parsing Keyword_value pairs 47

5 Parsing Keyword_value pairs

5.1 keyval_st

parse a string with keyword-value pairs

Synopsis
#include <suplib/keyval.h>

KeyValErr keyval_st(
const char *kv_spec,
KeyVal *map,
size_t nkey,
void *data,
long *where

)
Parameters

const char *kv_spec
keyword - value specification string to parse

KeyVal *map
keyword value type and offset map

size_t nkey
number of keywords in map

void *data
where the data are to be stored

long *where
position in string where error occurred

Description

keyval_st parses a string which contains multiple keyword-value pairs, or boolean switches.

Pairs or switches should be separated by semi-colons, commas, spaces, or tabs. Keywords

and values are separated by an equals sign. Values which are strings with embedded spaces

should be surrounded by qutoes. To embed a quote, escape it with ‘\’. Boolean values may

be specified either as keyword-value pairs, or just as the keyword (indicating true) with an
) 4

optional ‘!’ (indicating false). In the former case, the value may be any of ‘yes’, ‘no’, ‘0,
‘1’, ‘on’, ‘off’ (case is not significant).

The resultant values are stored in a user supplied structure. Offsets into the structure
are encoded in an array of KeyVal structures, which my be constructed by the caller. The
structures have the following definition:

typedef struct KeyVal
{

48 suplib

char *key; keyword name

KeyType type; keyword type

size_t offset; offset of value

int set; set to true if keyword read
int (*xfrm) (char *in, void *out);

} KeyVal;

The type field is one of Key_String, Key_Integer, Key_Float, Key_Double, or Key_
Boolean. The offset is the byte offset into the user supplied structure where the value is
to be stored. The set field is set by keyval_st if that keyword was present in the passed
specification string.

The xfrm field points to an optional function which takes the value string (in) and
converts it to the correct type. It should store the converted value in the address pointed to
by the out argument. For string types, it should store a freshly allocated string. It should
return zero upon success, non-zero upon failure. xfrm should be set to NULL if not used. It

is not used for Key_Boolean types.

Returns

It returns a code indicating whether an error ocurred. (See ‘suplib/keyval.h’ for the pos-
sible errors, and codes. It also returns the location of the error in the passed specification via
the passed where variable. The keyval_perror routine will print a human understandable
form of a KeyValErr.

Possible values for a KeyValErr are as follows:

KeyValErr_OK
no error

KeyValErr_NOMEM
out of memory

KeyValErr_NOKEY
no such keyword

KeyValErr_UNBAL
unbalanced quote or escape character

KeyValErr_INVAL
invalid value specification

KeyValErr_RANGE
the value is out of range

KeyValErr_MAXERR

Chapter 5: Parsing Keyword_value pairs 49

The Keyword Types And Their Storage Requirements Are
As Follows

Key_String
keyval will allocate space for a string; in this case, the field in the structure
must be a char * so as to accept a pointer to the string. If the contents of that
pointer are not NULL, keyval will free that memory first.

Key_Integer
the field must be an int;

Key_Float
the field must be a float;

Key_Double
the field must be a double;

Key_Boolean
the field must be an int;

Construction of this table is eased by use of the KeyValStEntry preprocessor macro:

where to stick the values
typedef struct Data

{

int n_flies;

double fly_lifetime;

char *food;

} Data;

KeyVal vals[] =

{

KeyValStEntry(fly_lifetime, Key_Double, Data),
KeyValStEntry(food, Key_String, Data),
KeyValStEntry(n_flies, Key_Integer, Data),

s

#define NFIELDS (sizeof(vals) / sizeof(KeyVal))

The KeyValStEntry macro assumes that the name of the keyword is the same as the
name of the field in the structure which is to receive the data. You can get around this
restriction by specifying the values to the KeyVal structure directly.

The entries in the KeyVal array must be in alphabetical order by keyword name. (See

keyval_cmp.)

Author

Diab Jerius

50 suplib

5.2 keyval_perror

output an error message associated with a KeyValErr

Synopsis
#include <suplib/keyval.h>

void keyval_perror(
FILE *fout,
KeyValErr error,
const char *spec,
long where

Parameters

FILE *fout
where to print the error message

KeyValErr error
which error to print

Possible values for a KeyValErr are as follows:

KeyValErr_OK
no error

KeyValErr_NOMEM
out of memory

KeyValErr_NOKEY
no such keyword

KeyValErr_UNBAL
unbalanced quote or escape character

KeyValErr_INVAL
invalid value specification

KeyValErr_RANGE
the value is out of range
KeyValErr_MAXERR

const char *spec
the specification which caused the error

long where
where in the spec the error ocurred

Chapter 5: Parsing Keyword_value pairs 51

Description

Error messages are returned by the keyval routines via an integer code of type KeyValErr.
This routine acts much like the system perror routine. It takes as input the output stream,
the error code, the keyval specification passed to the keyval parsing routines, and the where
argument returned by those routines. It prints an error message to the passed output

stream.

Author

Diab Jerius

5.3 keyval_cmp
compare KeyVal structures, alphabetically

Synopsis
#include <suplib/keyval.h>

int keyval_cmp(
const void *vl,
const void *v2

)
Parameters

const void *v1l
pointer to first KeyVal structure

const void *v2
pointer to second KeyVal structure

Description

keyval_cmp is an alphabetical comparison routine for KeyVal structures intended for use

by bsearch or gsort.

Returns

It returns ‘-1’ if the first structure is lexically earlier than the second, ‘0’ if they are the

same, and ‘1’ if the first is lexically after the second.

Author

Diab Jerius

Chapter 6: Timing processes 53

6 Timing processes

6.1 clearTime

initialize a Time structure to zero.

Synopsis

#include <suplib/times.h>
Time *clearTime(Time *t);

Parameters

Time *t the Time to clear

Description

clearTime clears the passed Time structure.

Returns

It returns a pointer to the passed Time structure.

Author

Diab Jerius

6.2 startTime
initialize a Time structure to the current time.

Synopsis

#include <suplib/times.h>
Time *startTime(Time *start);

Parameters

Time *start
the structure to fill. may be NULL

Description

startTime initializes an internal Time structure with the current user, system, and clock
times for the process. If the start parameter is not NULL, the same data are copied to the
user specified Time structure. The internal Time structure will be overwritten by each call

to startTime.

54 suplib

Returns

It returns a pointer to the internal Time structure.

Author

Diab Jerius

6.3 elapsedTime

return the time elapsed

Synopsis

#include <suplib/times.h>

Time *elapsedTime(Time *start);

Parameters

Time *start
the start time from which to determine the elapsed time

Description

elapsedTime determines the difference in time between the current user, system and clock
times and either a passed Time structure, or the internal Time structure initialized by

startTime (if the passed pointer start is NULL).

Returns

It returns a pointer to an internal Time structure containing the difference in times. This
structure is private to elapsedTime and will be overwritten by subsequent calls to it. It

returns NULL upon error.

Author

Diab Jerius

6.4 currentTime

return the current process times

Synopsis

#include <suplib/times.h>

Time *currentTime(Time *time);

Chapter 6: Timing processes 55

Parameters

Time *time
the destination Time structure

Description

currentTime fills a specified Time structure with the current user, system and clock times

for the process.

Returns

It returns the passed pointer.

Author

Diab Jerius

6.5 incTime
add some Time to some other Time

Synopsis

#include <suplib/times.h>

Time *incTime(
Time *dest,
Time *inc

)

Parameters

Time *dest
The Time which will be incremented

Time *inc the Time increment

Description

incTime increments a Time structure by the amount in a another Time structure

Returns

It returns a pointer to the destination Time structure, NULL if either the destination or the

increment was a NULL pointer.

Author

Diab Jerius

56

6.6 diffTime

return the difference in times between two Time structures.

Synopsis
#include <suplib/times.h>
Time *diffTime(
Time *diff,
Time *end,

Time *start

)

Parameters

Time *diff
where to copy the time differences

Time *end the ending time

Time *start
the starting time

Description

suplib

diffTime fills an internal Time structure with the difference in times between two passed

Time structures (end - start). The internal structure will be overwritten by the next call

to diffTime. If the diff argument is not NULL, the difference data are copied there as well.

Returns

It returns a pointer to the internal Time structure upon success. If either of start or end

are NULL, it returns NULL.

Author

Diab Jerius

6.7 stringTime

return a string representation the passed Time structure.

Synopsis

#include <suplib/times.h>

char *stringTime(Time *time);

Chapter 6: Timing processes 57

Parameters

Time *time
Not Documented.

Description

stringTime generates a printable string representing the passed Time structure. The string

is rendered into internal storage which will be overwritten by then next call to stringTime.

Returns

It returns a pointer to a printable string.

Author

Diab Jerius

Chapter 7: 1/O handling 59

7 1/0 handling

7.1 fget_rec_new

Create a fget_rec buffer structure.

Synopsis
#include <suplib/io.h>
void *fget_rec_new(
size_t buf_size,

size_t extend

)

Parameters

size_t buf_size
the initial size of the buffer

size_t extend
the amount to extend the buffer each time it is too small

Description

This routine creates a buffer structure that can be used by fget_rec. The buffer structure
should be destroyed with fget_rec_delete.

The calling procedure must provide the initial size of the buffer (including the trailing
"\0’ which seals off the string), as well as the amount by which the buffer should be extended
if the buffer is shorter than the input record. fget_rec repeatedly extends the buffer until
a record fits, so this value needn’t be that large. Note that the buf_size argument should

be greater than ‘1’.

Returns

It returns a pointer to a buffer structure (not the actual buffer) or NULL if it was unable to

allocate it.

Author

Diab Jerius

7.2 fget_rec_delete

Delete a fget_rec buffer structure.

60 suplib

Synopsis

#include <suplib/io.h>

void fget_rec_delete(void *rec);

Parameters

void *rec an fget_rec buffer structure to delete

Description

This routine deletes a buffer structure previously created by fget_rec_new. It also deletes

the accompanying buffer.

Author

Diab Jerius

7.3 fget_rec_read

Read a record of arbitrary length.

Synopsis

#include <suplib/io.h>

char *fget_rec_read(
FILE *fin,
void *recbuf,
size_t start

)

Parameters

FILE *fin the input stream from which to read the data

void *recbuf
an fget_rec buffer structure, created by fget_rec_new

size_t start
the zero-based index into the buffer where the incoming record
should be stored

Description

fget_rec_read reads data from the passed stream until either an end of line character or
the end of file is reached. It removes any end of line character from the string. It writes

the data into a user provided buffer, and extends the buffer as necessary to hold a complete

Chapter 7: 1/O handling 61

input record. The end of the buffer is terminated with a ’\0’. The buffer structure should
created by fget_rec_new and deleted with fget_rec_delete. The data is written into the
buffer at the position specified by the start parameter. If the starting position is beyond
the end of the buffer the buffer is extended and the string currently in the buffer is extended
with spaces to have length start. This happens even if there is no new data available in

the input stream.

Returns

It normally returns a pointer to the data that has been read. Upon end of file, it returns
NULL. If it cannot extend the record, it returns NULL and sets errno to ENOMEM. If there was
a read error on the stream, it returns NULL and the stream’s error flag is set (use ferror to
check it).

Author

Diab Jerius

7.4 fget_rec

Read a record of arbitrary length.

Synopsis
#include <suplib/io.h>
char *fget_rec(
FILE *fin,

void *recbuf

)

Parameters

FILE *fin the input stream from which to read the data

void *recbuf
an fget_rec buffer structure, created by fget_rec_new

Description

fget_rec reads data from the passed stream until either an end of line character or the end
of file is reached. It removes any end of line character from the string. It writes the data
into a user provided buffer, and extends the buffer as necessary to hold a complete input
record. The end of the buffer is terminated with a "\0’. The buffer structure should created
by fget_rec_new and deleted with fget_rec_delete.

This is essentially a wrapper around fget_rec_read, with start = 0.

62 suplib

Returns

It normally returns a pointer to the data that has been read. Upon end of file, it returns
NULL. If it cannot extend the record, it returns NULL and sets errno to ENOMEM. If there was
a read error on the stream, it returns NULL and the stream’s error flag is set (use ferror to
check it).

Author

Diab Jerius

7.5 fget_rec_append

Append a record of arbitrary length.

Synopsis

#include <suplib/io.h>

char *fget_rec_append(
FILE *fin,
void *recbuf

)

Parameters

FILE *fin the input stream from which to read the data

void *recbuf
an fget_rec buffer structure, created by fget_rec_new

Description

fget_rec_append reads data from the passed stream until either an end of line character or
the end of file is reached. It removes any end of line character from the string. It appends
the data to the end of the data in the user provided buffer, and extends the buffer as
necessary to hold a complete input record. The end of the buffer is terminated with a '\0’.
The buffer structure should created by fget_rec_new and deleted with fget_rec_delete.
Note that it appends the new data to the end of the

This is essentially a wrapper around fget_rec_read, with start = strlen(buf).

Returns

It normally returns a pointer to the data that has been read. Upon end of file, it returns
NULL. If it cannot extend the record, it returns NULL and sets errno to ENOMEM. If there was
a read error on the stream, it returns NULL and the stream’s error flag is set (use ferror to
check it).

Chapter 7: I/O handling

Author

Diab Jerius

63

Chapter 8: File/Directory processing 65

8 File/Directory processing

8.1 base_name
Remove the prefix and optionally a suffix of a string.

Synopsis
#include <suplib/file.h>

char *base_name(
char *string,
char *suffix
)
Parameters

char *string
the string to process

char *suffix
an optional suffix to remove. Set it to NULL to do nothing

Description

base_name removes all but the last level in a path (the file name) and, optionally, a suffix.
The former is accomplished by returning a pointer to the first character in the filename.

The latter is accomplished by writing an end of string character into the string.

Returns

It returns a pointer to the beginning of the filename.

Author

Diab Jerius

8.2 searchpath

Search a set of paths for a file.

Synopsis
#include <suplib/file.h>
char *searchpath(

char *xfile,
char *default_path,

66 suplib

char *path_spec

)

Parameters

char *file
the file to look for

char *default_path
the default path

char *path_spec

the list of paths

Description

searchpath scans a list of paths for a file. The paths are specified in a string, separated by
the PATHSEP character (*:’ for UNIX). The paths are searched in the order that they occur
in the string. If an empty path is found in the specification, a user specified default path
(or the current directory, should this not be specified) will be searched at that point. If the
filename begins with DIRSEP (‘/” for UNIX), it is used directly.

Returns

It returns a pointer to a dynamically allocated string holding the complete path, or NULL if

it couldn’t find the file or it ran out of memory. The calling procedure must free this string.

Author

Diab Jerius

Chapter 9: Routines helpful for Debugging 67

9 Routines helpful for Debugging

9.1 debug_init
parse debug flags and initialize internals

Synopsis
#include <suplib/debug.h>

int debug_init(const char *debug_flags);

Parameters

const char *debug_flags
a comma delimited list of debug flags

Description

debug_init and dbflag comprise a simple system for allowing users to specify debug flags
to a program in a human understandable fashion.

debug_init parses a string for debug flags. The flags are comma separated tokens of
any characters (preferrably alphanumeric). It builds an internal list of the specified flags,
which can be tested with the dbflag function.

There is but a single list kept per process, and subsequent calls to debug_init will
overwrite the list.

To free the memory associated with the internal list, debug_init should be called with
debug_flags set to NULL.

Returns

It returns zero upon success, nonzero if it ran out of memory

Author

Diab Jerius

9.2 dbflag

test for a debug flag

Synopsis
#include <suplib/debug.h>

int dbflag(const char *dbf);

68 suplib

Parameters

const char *dbf
the debug flag to test

Description

dbflag tests if the passed string was in the list of debug flags previously parsed by debug_

init.

Returns

It returns zero if the flag was not specified, non-zero if it was.

Author

Diab Jerius

9.3 die

print a formatted message and exit with error

Synopsis
#include <suplib/debug.h>

void die(
char *format,

)

Parameters

char *format
the printf style format string for the message

the arguments that make up the message

Description

die is a quick and dirty method of printing an error message and then exiting a program.
It’s just a combination of fprintf and exit, sending the output to stderr and exiting

with an exit value of ‘1’

Author

Diab Jerius

Chapter 9: Routines helpful for Debugging

9.4 hexdump

print out memory as hexidecimals

Synopsis
#include <suplib/debug.h>
void hexdump(
FILE *stream,

void *buf,
size_t length

)

Parameters

FILE *stream
where to print

void *buf the start of memory to dump

size_t length
the number of bytes to dump

Description

hexdump will pretty print out a section of memory in base 16.

Author

Diab Jerius

69

Chapter 10: Handling units 71

10 Handling units

It’s often handy for users to input numbers with unit specifications, so that they can work
in units appropriate to them, rather than to the program. This subpackage helps parse such
specifications, as well as convert between units.

Each type of unit is assigned an id, which is a non-negative integer. The id serves as
an index into an array of UnitConvert structures, which contain multiplicative conversion
factors from the given unit to a fiducial one. For example, length may be specified in
kilometers, meters, or millimeters. If millimeters is the fiducial unit, than the conversion
factors would be 1000, 1, .001, respectively. UnitConvert structures are bundled into a
UnitConvertList for ease of access.

Names are mapped to units via a TokList structure, with the units’ ids specified in the
TokListToken id field. There may be more than one name for a given unit (e.g. ‘kilometer’,
‘km’).

These two data structures are bundled together via the UnitsList structure.

This subpackage provides a set of linear, angular, temporal and energy units via
UnitsLinear_def, UnitsAngular_def, UnitsTime_def, and UnitsEnergy_def. Their
definitions are available in ‘suplib/units_linear.h’, ‘suplib/units_angular.h’,
‘suplib/units_time.h’; and ‘suplib/units_energy.h’, respectively

10.1 Setting up the structures

The first thing to do is to determine the set of units, and to declare an enum to hold the
id’s. Note that since the id’s are indices into the conversion list, they should be zero-based:

enum
{
UNIT_parsec, /* ’parsec’ */
UNIT_meter, /* ’m’, ’meter’ */
UNIT_decimeter, /* ’decimeter’, ’dm’ */
UNIT_centimeter, /* ’centimeter’, ’cm’ */
UNIT_millimeter, /* ’millimeter’, ’mm’ */
UNIT_micrometer, /* ’micrometer’, ’micron’, ’um’ */
UNIT_nanometer, /* ’nanometer’, ’nm’ */
UNIT_Angstrom /* ’A’, ’Angstrom’, ’angstrom’ */
};

Next, create a TokList structure which holds the names by which users can refer to the
units. Note that this must be in alphabetical order, and there may be more than one name
for a unit.

static TokListToken

map[] =

{
{ "A", UNIT_Angstrom },
{ "Angstrom", UNIT_Angstrom },
{ "angstrom", UNIT_Angstrom },

72 suplib

"centimeter", UNIT_centimeter 7},
"cm", UNIT_centimeter },
"decimeter", UNIT_decimeter },
"dm", UNIT_decimeter },

"m", UNIT_meter },

"meter", UNIT_meter },
"micrometer", UNIT_micrometer I},
"micron", UNIT_micrometer },
"millimeter", UNIT_millimeter },
"mm", UNIT_millimeter 3},
"nanometer", UNIT_nanometer },
"nm", UNIT_nanometer },
"parsec", UNIT_parsec },

"um", UNIT_micrometer 7}

B N e S Nl e T e N S W s,

s
TokList map_list = GenTokList(map);

Then, construct a table of conversion factors. These must be in the same order as your
enum table for the indices to work correctly.

static UnitConvert

convert[] =

{
{ UNIT_parsec, 3.086e19 },
{ UNIT_meter, 1000 },
{ UNIT_decimeter, 100 },
{ UNIT_centimeter, 10 },
{ UNIT_millimeter, 1 },
{ UNIT_micrometer, 1e-3 I},
{ UNIT_nanometer, le-6 1},
{ UNIT_Angstrom, le-7 7},

};

UnitConvertlList convert_list = genUnitConvertList(convert);
Finally, construct a UnitList structure:
UnitList MyUnits = { &convert_list, &map_list };
If you’d like to automate this, see ‘mk_units’ and ‘default.units’ in the
‘suplib/units’ source directory. ‘mk_units’ is a script which reads unit names and
conversions from ‘default.units’ and generates the header and C code for the structures.

10.2 units_parse

parse a string composed of a floating point number and a units specification.

Synopsis

#include <suplib/units.h>

Chapter 10: Handling units 73

int units_parse(
const char *spec,
UnitVal *uv,
const UnitsList *list

)

Parameters

const char *spec
the specification to parse

UnitVal *uv
the resultant number and unit id

const UnitsList *1ist
the list of units

Description

This routine parses a string composed of a floating point number and a units specification
(e.g. ‘lmm’, ‘23 arcsec’). White space between the number and the unit is ignored. The

caller must ensure that there is no white space following the unit specification.

Returns

The parsed number and the unit id are written into the passed UnitVal structure. The unit
element is only changed if a valid unit was found. units_parse returns a UNITS_ParseErr
consistent with the results of the parse:

UNITS_OK no errors were encountered

UNITS_BADNUM
there was an error while parsing the number

UNITS_NOSPEC
no units specification was present

UNITS_BADSPEC
the units specification wasn’t recognized

Author

Diab Jerius

10.3 units_cvt

get the conversion factor from one unit to another

Synopsis

#include <suplib/units.h>

74 suplib

double units_cvt(
const UnitsList *1list,
int from,
int to

)
Parameters

const UnitsList *x1ist
the Units list

int from the unit id of the source unit

int to the unit id of the destination unit

Description

units_cvt returns a conversion factor from one unit to another. Both units must be in the

passed UnitConvertList.

Returns

Upon success (i.e., the units are in the UnitConvertList), it returns the conversion factor.

Upon error, it returns ‘0.0’.

Author

Diab Jerius

Chapter 11: List manipulation 75

11 List manipulation

11.1 bnd_bsearch

binary search with bounding element return

Synopsis

#include <suplib/lists.h>

const void *bnd_bsearch(
const void x*key,
const void x*base,
size_t n,
size_t size,
const void **lo_bnd,
const void **hi_bnd,
int (*cmp) (const void *keyval,const void *datum)

)

Parameters

const void *key
a pointer to the comparison key

const void *base
the list of objects

size_t n the number of objects in the list

size_t size
the size of an object in bytes

const void **1lo_bnd
the address of a pointer which will be set to the address of the
largest object lower than the key

const void *x*hi_bnd
the address of a pointer which will be set to the address of the
smallest object higher than the key

int (*cmp) (const void *keyval,const void *datum)
a routine which compares the user supplied key to an object, re-
turning <1, 0, or >1 if the key is respectively less than, equal to, or
greater than the object

Description

bnd_bsearch performs a binary search upon a list of objects, returning the matching object
or the bounding objects if the key is not found.

76 suplib

e If an object matches key, its address is returned and lo_bnd and hi_bnd are set to the
address.

e If an object is not found, NULL is returned, and hi_bnd and lo_bnd are set as follows:

If key falls between two objects, lo_bnd and hi_bnd are set to the addresses of the
bracketing objects.

If key is less than any object in the list, lo_bnd is set to NULL and hi_bnd is set to
base.

If key is larger than any object in the list, lo_bnd is set to base + (n-1) and hi_bnd
is set to NULL.

Warning

Note that while hi_bnd and lo_bnd are declared as void *, the calling routine must pass a

pointer to a pointer!

Author

Diab Jerius

11.2 partition

partition a list about an object

Synopsis
#include <suplib/lists.h>

void *partition(
void *obj,
void *p_obj,
void *work,
size_t s_obj,
unsigned long n_obj,
int (*obj_comp) (const void *objl,const void *obj2)

);
Parameters

void *obj list of objects to partition
void *p_obj
object about which to partition list. need not be in the list

void *work
work area with size 2 * s_obj

Chapter 11: List manipulation 77

size_t s_obj
size of an object in bytes

unsigned long n_obj
number of objects in list

int (*obj_comp) (const void *objl,const void *obj2)
function which compares two objects and returns < 1, 0, > 1, de-
pending if the first object is less than, equal to, or greater than the
second

Description

partitions the list obj[0 ... n] into two sub-lists obj[0 ... q] and objlq+l ... n],
such that obj[i] (0 <= i <= q) <= pobj <= obj[j] (q < j <= n) where pobj is a supplied
"pivot" point. returns the top object in the first sub-list, i.e. obj[q]. pobj need not be in

the list. in this case, if no object is less than pobj, NULL is returned.

References

See "Introduction to Algorithms", T.H.Kormen, C.E.Leiserson, and R.L. Rivest sec. 8.1,
p.154.

Author

Diab Jerius

Chapter 12: 1D and 2D Image manipulation 79

12 1D and 2D Image manipulation

12.1 ave_dev_err

determine statistics for a list of objects.

Synopsis

#include <suplib/imagefcts.h>

void ave_dev_err(
void *objs,
size_t n_obj,
size_t s_obj,
double *x_ave,
double *x_ave_err,
double *x_dev,
double *x_dev_err,
double *tot_wt,
void (xget_stuff) (const void *obj,double *x,double *x_err,double *w,double *w_err)|]

)
Parameters

void *objs
pointer to list of objects to process

size_t n_obj
number of objects in list

size_t s_obj
size of an object, in bytes

double *x_ave
weighted average of objects

double *x_ave_err
uncertainty in weighted average

double *x_dev
weighted deviation of objects

double *x_dev_err
uncertainty in weighted deviation

double *tot_wt
total weight of objects

void (*get_stuff) (const void *obj,double *x,double

*X_err,double *w,double *w_err)
pointer to function which returns the weight, position, and uncer-
tainties in weight and position of an object

80

Description

suplib

ave_dev_err determines the total weight, weighted average, uncertainty in weighted aver-

age, weighted deviation and uncertainty in weighted deviation for a list of objects.

Author

Diab Jerius

12.2 center_variter

iteratively determine the center of a distribution

Synopsis

#include <suplib/imagefcts.h>

int center_variter(
void *objs,
void *wwork,

unsigned long n_objs,

double tot_wt,
size_t s_obj,
double dtol,
double fvar,

unsigned long max_iter,
unsigned long max_clip,

double *center,
double *dev_used,
size_t *n_used,
double *wt_used,
void **objs_used,

double (*get_x) (const void *obj,double *x),
void (*put_x)(void *obj,double x),
int (*comp) (const void *objl,const void *obj2)

)

Parameters

void *objs

the list of objects to process

void *wwork

a work space of size 3 * s_obj

unsigned long n_objs

total number of objects to process

double tot_wt

the total (summed) weight of all of the objects.

Chapter 12: 1D and 2D Image manipulation 81

size_t s_obj
the size of an object in bytes

double dtol
smallest absolute (not percentage) difference between two distances
so as to consider them distinct.

double fvar
fraction of determined variance in distance above which to ignore
objects in center determination.

unsigned long max_iter
maximum number of iterations to perform.

unsigned long max_clip
maximum number of clips per iteration to perform.

double *center
the final determined center

double *dev_used
the standard deviation of the objects remaining after the last round
of clips

size_t *n_used
the number of objects remaining after the last round of clips

double *wt_used
the summed weights of the objects remaining after the last round
of clips

void **objs_used
a pointer to the objects used

double (*get_x) (const void *obj,double *x)
routine which retrieves position of an object. returns weight of
object

void (*put_x) (void *obj,double x)
routine which stuffs a position into an object.

int (*comp) (const void *objl,const void *obj2)
routine which compares two objects based upon their squared dis-
tances (same setup as routines for *<qsort>*)

Description

center_variter determines the center of a distribution by iteratively rejecting objects
whose deviation in distance from a determined center is greater than a given number of
sample deviations from the center. After each iteration, changes in the determined center

are measured; if the changes are less than a specified threshold, the algorithm is deemed to

82 suplib

have converged. Additionally, there is a limit on the number of iterations performed. The

input list of objects is reordered.

Returns
It returns the following information about the set of objects which survived the clipping
spree:
center the final determined center
dev_used the mean deviation from the center
n_used the number of objects
wt_used the weight of the objects
objs_used
a pointer into the (reordered) input list where the final list of objects starts

The actual value returned by center_variter will be one of:

CVR_OK everything went well

CVR_LESSTHANTWO
less than two objects were left after clipping. fvar was probably too low

CVR_MAXITER
the iteration limit was reached.

A More Detailed Description Of The Algorithm

1. a mean center is determined and used as the initial guess

2. distances to the determined center are calculated for all objects, and the variance (with
respect to zero distance) is calculated.

3. objects with variances greater than the specified limit are rejected and the group vari-
ance recalculated after each rejection. this is repeated until either no more objects are
rejected, the object count drops below a limit, or an iteration limit is reached.

4. a new mean center is calculated using the objects surviving the culling, and compared
to the previous determination. if the distance between the two centers is less than the
specified tolerance, the procedure ends. if the iteration limit has not been reached, the
process continues with step 2.

Author

Diab Jerius

12.3 weightpos

determine the mean weighted position of a group of objects

Chapter 12: 1D and 2D Image manipulation 83

Synopsis

#include <suplib/imagefcts.h>

double weightpos(

void *objs,

unsigned long n_tot,

double tot_wt,

size_t s_obj,

double (*get_x) (const void *obj,double *x)
)3

Parameters

void *objs
list of objects whose mean position is to be determined

unsigned long n_tot
total number of objects to process

double tot_wt
total weight of objects. if zero, each object is assumed to have a
weight of 1.

size_t s_obj
size of an object

double (*get_x) (const void *obj,double *x)
function which returns the position and weight of an object

Description

determine the mean weighted position of a group of objects. requires a user supplied function
which extracts an object’s position and weight. designed to be run over sub-groups of the
list (for low memory situations). optimized for both weighted and unweighted (weight = 1)
data.

Returns

It returns the mean weighted position of the group.

Author

Diab Jerius

12.4 wtvar

determine the unnormalized variance of objects’ distance from a given point

84 suplib

Synopsis

#include <suplib/imagefcts.h>

double wtvar (

double x,

void *objs,

unsigned long n_obj,

double tot_wt,

size_t s_obj,

double (*get_x) (const void *obj,double *x)
)3

Parameters

double x x coordinate of point from which to determine distance

void *objs
pointer to list of objects to process

unsigned long n_obj
number of objects in list

double tot_wt
if non-zero, indicates that objects are weighted

size_t s_obj
size of an object, in bytes

double (*get_x) (const void *obj,double *x)
pointer to function which returns the coordinates of an object as
well as its weight

Description

wtvar determines the unnormalized variance (from zero) of objects’ distance from a given

point. It requires a user supplied function which extracts an object’s position.

Returns

It returns the variance.

Chapter 13: Statistical Calculations 85

13 Statistical Calculations

13.1 gsmirn

exact Smirnov Two-Sample tests for arbitrary distributions.

Synopsis
#include <suplib/stats.h>
int gsmirn(
int nx,
int ny,
int kind,
int *m,
double dstat,

double *q
)3

Parameters

int nx The number of observations in the first sample
int ny The number of observations in the second sample
int kind The hypothesis tested

int *m The number of observations falling into each of K categories (with
ascending order of category values)

double dstat
The statistic

double *q output: p-value

Description

gsmirn generates the P-value for the generalized two-sample Smirnov tests. It calculates
the probability of the null hypothesis (that the two samples are the same) based upon one
of three statistics

1. sup | X-Y |
2. sup (X-Y)
3. sup (Y-X)

The input parameter kind indicates which of these should be calculated. The input
parameters m and dstat are calculated by the stcalc subroutine.

See Applied Statistics, Vol. 43, No. 1 (1994), 265-270.

86 suplib

Returns
0 no error
1 thenx < 1lorny<1

kind!=1,2o0r 3

2

3 g is not positive

4 m is inconsistent with nx and ny or has non-positive elements
5

allocation of workspace failed

Warning

This code returns incorrect values for large nx and ny for nx != ny for various ratios. See

gsmirn?2 for a slower version which does not suffer from these problems.

Author

Original by Andrei M. Nikiforov C transcription by Diab Jerius

13.2 gsmirn2

exact Smirnov Two-Sample tests for arbitrary distributions.

Synopsis

#include <suplib/stats.h>

int gsmirn2(
int nx,
int ny,
int kind,
int *m,
double dstat,
double *q

);

Parameters

int nx The number of observations in the first sample
int ny The number of observations in the second sample
int kind The hypothesis tested

int *m The number of observations falling into each of K categories (with
ascending order of category values)

double dstat
The statistic

Chapter 13: Statistical Calculations 87

double *q output: p-value

Description

gsmirn?2 generates the P-value for the generalized two-sample Smirnov tests. It calculates
the probability of the null hypothesis (that the two samples are the same) based upon one
of three statistics

1. sup | X-Y |

2. sup (X-Y)

3. sup (Y-X)

The input parameter kind indicates which of these should be calculated. The input
parameters m and dstat are calculated by the stcalc subroutine.

This version uses the method of Timonin and Chernomordik (Theor. Prob.Appl.,1985)
to avoid large numbers for P instead of direct scaling adopted by published algorithm AS
288.

One-sided tests are coded separately to use the fast calculation scheme

See also gsmirn.

Returns

0 no error

1 thenx < lorny<1

2 kind!=1,2o0r 3

3 g is not positive

4 m is inconsistent with nx and ny or has non-positive elements
5 allocation of workspace failed

Author
Original by Andrei M. Nikiforov C transcription by Diab Jerius
Copyright

As there is no copyright or license notice, it is assumed to be freely redistributable with no

restrictions.

13.3 stcalc

calculate classical or weighted Smirnov statistic

Synopsis

#include <suplib/stats.h>

88 suplib

int stcalc(
int icw,
int nx,
int ny,
double *x,
double *y,
int *k,
int **m,
double *dstats
);

Parameters

int icw classical (1) or weighted (2) Smirnov statistic

int nx The number of observations in the first sample

int ny The number of observations in the second sample
double *x input: The first sample

double *y input: The second sample

int *k output: The number of categories in the pooled sample
int **m output: The number of observations in each category.

double *dstats
output: the calculated statistics

Description

stcalc calculates statistics, number of categories (i.e. unique values in the sample) in the
pooled sample and numbers of observations falling into each category for the two-sample
Smirnov tests for arbitrary distributions.

The following statistics are calculated.
1. sup | X-Y |
2. sup (X-Y)
3. sup (Y-X)

Returns

The number of categories is returned via the k argument. The address of an integer array
with *k elements holding the number of observations per category is returned via m. stcalc
allocates the array; the calling routine must free it. The statistics are written to the dstats
parameter, which is a caller-allocated array of minimum length 3. The return value of the
subroutine may have the following possible values.

0 no error

1 thenx <lorny<1

Chapter 13: Statistical Calculations 89

2 allocation of workspace failed

Author

Original by Andrei M. Nikiforov C transcription by Diab Jerius

Copyright

This code is copyrighted by the Royal Statistical Society. It may be distributed provided
that no fee is charged.

13.4 kolmogorov

calculate the probability distribution of Kolmogorov’s goodness-of-fit measure.

Synopsis

#include <suplib/stats.h>

int kolmogorov (
int n,
double d,
double *p

)3

Parameters

int n The number of random variates
double d The Kolmogorov statistic, D_n
double *p Output: probability(D-n < d)

Description

kolmogorov calculates the probability distribution of Kolmogorov’s goodness-of-fit measure,
D_n, providing P(D_n < d).

This code is taken from G. Marsaglia, Wai Wan Tsang and Jingbo Wong, J.Stat.Software
(http://www.jstatsoft.org/v08/i18/). The only changes were to support error returns.

Returns

0 no error

ENOMEM a memory allocation failed.

Author

Original by G. Marsaglia, Wai Wan Tsang and Jingbo Wong.

90 suplib

Copyright

As per http://wuw. jstatsoft.org/instructions.php, "papers and code on our servers,
will be freely and unrestrictedly available for anonymous ftp".

	Copying
	Introduction
	Ranges of numbers
	rangef_parse
	range_perror
	rangef_del
	rangef_in
	rangef_new
	rangel_parse
	rangel_count
	rangel_del
	rangel_dump
	rangel_new
	rangel_next
	rangel_minmax
	rangel_rep_maxval
	rangel_rep_minval
	rangel_rep_val
	rangel_reset

	Strings and tokens
	str_dup
	str_join
	str_prune
	str_rep
	str_tokcnt
	str_tokenize
	str_tokenize_free
	str_tokq
	str_tokq_restore
	str_tokqcnt
	str_tokbqenize
	str_tokbqenize_free
	str_tokbq
	str_tokbq_init
	str_tokbq_free
	str_tokbq_restore
	str_tokbqcnt
	str_trim
	str_trunc
	str_dtokcnt
	str_dtoksplit
	str_varscan
	str_interp
	tokmatch
	tokcmp
	tokqsplit
	toksplit
	unescape
	unquote

	Parsing Keyword_value pairs
	keyval_st
	keyval_perror
	keyval_cmp

	Timing processes
	clearTime
	startTime
	elapsedTime
	currentTime
	incTime
	diffTime
	stringTime

	I/O handling
	fget_rec_new
	fget_rec_delete
	fget_rec_read
	fget_rec
	fget_rec_append

	File/Directory processing
	base_name
	searchpath

	Routines helpful for Debugging
	debug_init
	dbflag
	die
	hexdump

	Handling units
	Setting up the structures
	units_parse
	units_cvt

	List manipulation
	bnd_bsearch
	partition

	1D and 2D Image manipulation
	ave_dev_err
	center_variter
	weightpos
	wtvar

	Statistical Calculations
	gsmirn
	gsmirn2
	stcalc
	kolmogorov

