
trace-shell

Page 1

NAME
trace-shell - ray trace a shell, hey!

SYNOPSIS
trace-shell options

ARGUMENTS
trace-shell uses an IRAF-compatible parameter interface. The
 available parameters are:

tag

A prefix to be used on all intermediate files created. There are lots
 of intermediate files;
see the section on Intermediate Files.

src

The location of a raygen compatible source script. If it is the
 string default, the value of
the source_spec keyword in the trace-shell configuration file is used.

srcpars

Extra parameters to be passed to the source script. If it ends in .lua it is interpreted as
being the name of a Lua script. See the
 documentation for the source script for information
on which
 parameters are available.

output

The output stream to which to write the rays. It may be a filename,
 or the string stdout, in
which case rays will be written to the
 standard output stream. If it is the string default, a
file name
 will be created by appending the output_fmt to the tag (with an
 intervening
period).

output_fmt

The output format of the rays. May be one of fr, bpipe, rdb,
 or a fits variant. See
Output Formats for more information.

output_coord

The output coordinate system of the rays. May be one of osac, hrma, xrcf.

output_fields

Which data fields to output for each ray. The value may be one of

all

A rather large amount of information.

<field names>

A comma delimited list of field names to output. Field names may be
 prefixed with
-, indicating that they are to be removed from the
 list of output fields. If the only
fields specified are those to be
 removed, the initial output list contains all of the
fields in the data.

The field name min is an alias for specifying the following fields:

 position direction weight energy time

The order of additive and subtractive fields is unimportant; all additive
 fields are
inserted into the list before the subtractive fields are removed.

trace-shell

Page 2

shell

The shell to raytrace.

seed1

The first seed for the random number generator. It must be in the range
 [1,2147483562].

seed2

The second seed for the random number generator. It must be in the range
 [1,214748339]

block

The random number block at which to start. It must be in the range
 [0,1048575].

block_inc

The spacing between random number blocks for each random process. 100
 is a good
number.

tstart

The start time of the observation in seconds. If less than zero and
 jitter is turned on, the
start of the valid jitter time range is used.

limit

The quantity of whatever limit_type specifies that raygen must
 generate. If
limit_type is a unit of time, this is added to the
 start time (see tstart) to determine
the stop time of the
 simulation. If jitter is on and this is set to 0, then the stop
 time is set
equal to the end of the valid jitter time range.

limit_type

The units of the limit at which to stop generating rays.

ksec

kiloseconds of observation time

sec

seconds of observation time

Mrays

millions of rays at the entrance aperture

krays

thousands of rays at the entrance aperture

rays

rays at the entrance aperture

r/mm2

a ray density at the entrance aperture in rays / mm^2

r/cm2

a ray density at the entrance aperture in rays / cm^2

focus

A boolean parameter indicating that the focus of the system is to be
 determined. See the

trace-shell

Page 3

Focus section for more details.

z

The position along the Z (optical) axis at which to leave the rays.

tally

If non-zero, a tally of photons will be written to the standard
 error stream every tally
rays. This is useful if you're wondering
 why it's taking so long to run the raytrace. This
tallies the number
 of rays which make it out of the shell, after all of the post-optic

apertures.

config_dir

trace-shell will change into this directory before reading
 the configuration file. This allows
relative includes within
 standard configuration files to work.

config_db

The name of the configuration file which provides the details of the
 mirror configuration. If
this begins with . or /, the
 configuration file in the specified directory will be used. Note
that trace-shell will still change directory to config_dir before
 reading the configuration
file.

version

Print out the version information and exit.

help

Print out this message and exit.

debug

A comma separated list of debugging options. See Debugging
 for more information.

DESCRIPTION
trace-shell raytraces a single Wolter type I X-ray telescope
 shell with various apertures and baffles. It
was designed around the
 AXAF HRMA, but may be used for other systems. In order to isolate the
 source
specification from the specification of the optics, it uses a
 separate optics configuration file (see
Configuration File).

trace-shell uses a variety of programs to accomplish the
 raytrace. To see the actual raytrace command
pipeline, use the debug pcomm option.

Configuration File
The trace-shell configuration file (specified by the config_dir and config_db parameters) describes the
telescope
 configuration. See the ts_config documentation for more information.

Intermediate Files
trace-shell produces a few intermediate files, prefixed by the
 value of the tag parameter:

tag.gi

This is a rather arcanely formatted file required by SAOdrat. It's not of
 much general
interest.

tag.totwt-in

This file contains the number and weight of the rays at the entrance aperture.
 It is
produced by tot_wt.

trace-shell

Page 4

tag.totwt-out

This file contains the number and weight of the rays which have made it through
 the entire
configuration. It is produced by tot_wt.

tag.focus.lis

This is an arcanely formatted file created during a focus run by saofocus.

tag.summary.rdb

This summarizes the tag.totwt-in, tag.totwt-out, and tag.focus.lis
 files.

Output Formats
trace-shell produces output in one of the following formats,
 specified by the output_fmt parameter:

fr

The fr format has no header. Each ray is in a fullray structure.
 See
/proj/axaf/simul/include/fullray.h for the formats of the ray
 structure.

bpipe

The rays are in bpipe format. See the bpipe documentation for
 more information on this.

rdb

The rays are written as an RDB table.

a fits variant

Various FITS formatted outputs may be specified. In all cases the
 output must be to a file.

fits-axaf

The rays are written according to the AXAF FITS Photon standard.

fits-events

The rays are written in the common astronomical X-ray
 "events" format. Most X-ray
Astronomy software uses this convention.

Focus
If you wish to determine where the focal point for a given
 configuration is, set the focus parameter to yes
. Because of
 bad interactions between the focus algorithm and wildly scattered
 rays, micro-roughness
induced ray scattering and ghost-ray tracking is
 turned off when focussing. You should nominally only
focus with a
 point source. If the src parameter is set to default, the
 default focus source (as specified in
the configuration file) will be
 used. You may need to specify arguments for the focus source via the
srcpars parameter. The focus procedure is carred out by saofocus which leaves its results in files called
tag.focus.lis
 and tag.focus.rdb (where you've specified tag). The first file's
 format is pretty
arcane; generally to extract the focus from there, run the
 script getfocus on it:

 getfocus tag.focus.lis

which will write out the focal position (in OSAC coordinates) to the
 standard output stream. The second
file (tag.focus.rdb) contains
 the three-dimensional position of the Global Optimal Focus.

Debugging
The debug options that are available are:

pcomm

trace-shell

Page 5

Print out the raytrace command before executing it. This gives you
 some idea of which
programs are running and what their inputs are.

noexec

Generate the raytrace command and any required intermediate files, but
 do not execute it.
Most useful with the pcomm debug option.

reuse

Reuse the raytrace output from a previous identical run to
 regenerate the summary
information. noexec must not be
 specified simultaneously. The raytrace parameters
should be
 identical except for the addition of this flag.

normalize_limit

If specified and the limit_type parameter is density related, the
 output ray weights will
be scaled so that the input photon density is
 1. This allows specifying different photon
densities for each shell
 to provide a uniform statistical errors while retaining the ability to

easily coadd the raytraces for different shells.

noproject

Do not project the rays to the value specified by the z parameter.
 This is a temporary
kludge, and will probably not survive into the
 next version of trace-shell.

save-rays:location

save-history:location

save-rays and save-history are complementary means of getting a
 look at the rays
as they pass through the raytrace.

save-rays will create a copy of the current state of the rays on disk.
 Save
intermediate rays. Rays are saved in bpipe format to the file ${tag}-where.bp.

save-history will store a copy of the current state of the rays in
 the ray stream.
It does this by changing every data packet field into an
 array, and using it as a
stack; newer data is at index 0; the oldest
 is at the end of the array. To limit the
number of fields which have
 history, use the save-history-fields debug
option.

There are a number of pre-defined locations in the raytrace at which ray history
 may be
saved. Multiple locations may be specified. Use the format

 save-rays:location
 save-history:location

location is one of

input

Rays coming out of the ray generator

h-pre-intercept

p-pre-intercept

Rays before they are intercepted with the optic.

h-pre-reflect

p-pre-reflect

Rays before they are reflected at the optic.

trace-shell

Page 6

h-pre-scatter

p-pre-scatter

Rays before they are scattered off of the optic

h-post-scatter

p-post-scatter

Rays after they are scattered off of the optic

save-history-fields=colon separated list of fields

By default, saving history (see the save-history debug option)
 saves all fields. This can
be expensive. To limit the number of
 fields saved, set this option to a colon separated list
of fields:

 save-history-fields=position:direction:id

input-tap=command

The rays exiting the ray generator (before they hit the shells) will
 be copied to the standard
input stream of the specified command (thus
 the name input-tap). The command may
refer to any of the
 parameters given to trace-shell using the syntax $parameter or
${parameter}. For example,

 debug=input-tap='frobnicator input=stdin output=$tag.frob'

The rays are in bpipe format.

input-filter=command

The rays exiting the ray generator are passed through the provided
 command before being
sent to the shells. The command must read the
 rays from its standard input and write the
modified rays to its
 standard output. The command may refer to any of the parameters
given
 to trace-shell using the syntax $parameter or ${parameter}.
 For example,

 debug=input-filter='snackmaster input=stdin output=stdout'

The rays are in bpipe format.

noghosts

Ghost rays will not be propagated through the system.

output-tap=command

The rays exiting the optics (after projecting to the final
 requested position, but before any
coordinate conversions) will
 be copied to the standard input stream of the specified
command (thus
 the name output-tap). The command may refer to any of the

parameters given to trace-shell using the syntax $parameter or ${parameter}. For
example,

 debug=output-tap='frobnicator input=stdin output=$tag.frob'

The rays are in bpipe format.

output-filter=command

The rays exiting the optics (after projecting to the final requested
 position, but before any
coordinate conversions) are passed through
 the provided command before being tallied
and finally written to the
 requested destination. The command must read the rays from its

trace-shell

Page 7

standard input and write the modified rays to its standard output.
 The command may refer
to any of the parameters given to trace-shell using the syntax $parameter or
${parameter}.
 For example,

 debug=output-filter='snackmaster input=stdin output=stdout'

The rays are in bpipe format.

scat_min_prob=fractional probability

set the minimum scattering probability for both optics

scat_max_prob=fractional probability

set the maximum scattering probability for both optics

scat_p_min_prob=fractional probability

set the minimum scattering probability for the paraboloid

scat_p_max_prob=fractional probability

set the maximum scattering probability for the paraboloid

scat_h_min_prob=fractional probability

set the minimum scattering probability for the hyperboloid

scat_h_max_prob=fractional probability

set the maximum scattering probability for the hyperboloid

SEE ALSO
trace-nest3, ts_config

COPYRIGHT AND LICENSE
Copyright 2006 The Smithsonian Astrophysical Observatory

This software is released under the GNU General Public License. You
 may find a copy at:
http://www.fsf.org/copyleft/gpl.html

AUTHOR
Diab Jerius <djerius@cfa.harvard.edu>

