Resolving the Chandra / ACIS PSF using Actual Data Deron Pease, Diab Jerius,

and CXC Optics Group

Credit: NASA/CXC/Northwestern U./C.Heinke et al.

Previous Studies: HRC

AR Lac HRC-I

- AR Lac on HRC-I ObsID 1385 (~19ks)
- correct for systematic errors in event positions
- Model: HRMA + 20 μm HRC blur
 + 0."06 Aspect blur

Previous Studies: ACIS

- DJ's SPIE paper from 2003
- 12 sources
- ACIS-I & -S
- Various coadditions
- Energy cuts
- Comparison with HRC-I AR Lac

Extended, "puffy"

Expectations?

Source Selection Criteria

- Point sources (stars, QSOs)
- Within 50" of optical axis
- High galactic latitude $\Rightarrow |b| > 10^{\circ}$
- Low counts per frame $\Rightarrow < 0.1$
- High counts $\Rightarrow \ge 100$, prefer $\ge 1000 *$
- FAINT, VFAINT mode to further select low count rates
- No grating (excludes most high energy sources) *
- Preferably uncrowded fields
- Any other concerns literature info

Sources Found & Analyzed

- I. Start with ~100,000 sources
- 2. Ist cut \Rightarrow ~250 Stars ~290 AGN (all followed up)
- 3. 2^{nd} cut \Rightarrow 28 Stars 12 AGN (these fully analyzed)
- 4. 3^{rd} cut \Rightarrow 3 Stars 2 AGN (these best by far)

➡ 47 Tuc & PG 1634+70

- Visual inspection
- De-Roll
- Clean & filter data properly (dmtools, funtools)
- Light-curve inspection
- Grade analysis looking for pile-up effects
- Encircled energy & radial profile analysis

Observations

Source	ObsID	Detector	Exposure (sec)
PG 1634+70 (QSO)	69	ACIS-S	5713.55
	1269	ACIS-S	13309.95
47 Tuc (GC)	953	ACIS-I	33368.23
	955	ACIS-I	33368.73
AR Lac	1385	HRC-I	18831.93

ACIS Results

PG1634+70 ACIS-S & 47 Tuc ACIS-I

Chandra ECF

AR Lac HRC-I vs. PG1634+70 ACIS-S vs. HRMA

Conclusions

- ✓ We've shown that the ACIS PSF (with pixel randomization) is comparable to the HRC PSF
- But what's going on with pixel randomization off?
 - One might say: pixel randomization is necessary because we don't know where an event landed in a pixel. EOS
 - But clearly there is a significant difference:

Credit: NASA/CXC/Northwestern U./C.Heinke et al.