Signatures of AGN Accretion Disk Winds in X-ray spectra

Stuart Sim

Lance Miller (Oxford), Daniel Proga (Las Vegas) Knox Long (STScI), Jane Turner (Maryland), James Reeves (Keele)

> Max Planck Institute for Astrophysics

Boston

Observational motivation

PG1211+143 (Pounds & Reeves 2009) See also Tombesi et al. (2010)

Boston

Theoretical motivation

- Mass loss expected for luminous disk
- Complex flow structure
- Time variable

Line driven wind (Proga & Kallman 2004)

Theoretical motivation

- Mass loss expected for luminous disk
- Complex flow structure
- Time variable

Line driven wind (Proga & Kallman 2004)

Questions:

- Does the disk wind geometry work for blue-shifted absorption lines?
 - Is profile shape/strength compatible?
 - How common should they be?
- What about cases without X-ray absorption lines?
 - What else should the wind do?
 - How might the wind complicate other diagnostics?

Want to be able to compute synthetic spectra for realistic disk wind geometries.... Requires multi-D rad. Trans.

Method: the code

- Monte Carlo method (Lucy 2002, 2003)
 - + Good for complex geometry/Compton scattering
 - + Parallelizable
 - MC noise

• Solves for ionization balance

- + Use MC estimators on computational grid
- + Coupled to approximate thermal balance
- Very simple treatment of excitation

• Obtain l.o.s. spectra

- + Both transmitted and scattered/reprocessed
- Sobolev approximation for lines

Method: atomic processes

- Atomic Processes
 - Bound-bound lines
 - Bound-free continua (and inner shell photo. abs)
 - Compton scattering (cold electrons)
 - Free-free
 - Auger effect
 - Electron collisions (ionization/excitation)

• Data for K- and L-shell ions

- C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, Ni
- High M-shell ions of Fe and Ni

See Sim et al. (2008,2010)

Approach: two attack routes

1. Forward modelling

- + Apply to theoretical models/hydro simulations
- + Predictive power
- Imperfect matches (few "fitable" parameters)

2. Parameterised, semi-empirical model grids

- + Flexible geometric prescription
- + Allows for quantitative comparison
- Parameter degeneracy

1) Forward modelling (Sim, Proga et al. 2010)

7/13/2010

Boston

Consider two snapshots from Proga & Kallman (2004) Separated in time by ~5 years

7/13/2010

Boston

Consider two snapshots from Proga & Kallman (2004) Separated in time by ~5 years

7/13/2010

Boston

Consider two snapshots from Proga & Kallman (2004) Separated in time by ~5 years

Compute synthetic spectra:

- Central power-law X-ray source
- Both snapshots
- Multiple orientations
- Broadly, <u>3 classes of spectra</u>

7/13/2010

Polar observer:

- Direct continuum + Reflection
- Broad Fe Ka + weak Comp. hump

Intermediate orientation observer:

- Weaker continuum + Reflection
- Broad Fe Ka + weak Comp. Hump
- Narrow absorption lines

High orientation observer:

- Scattered/reprocessed spectrum
- Complex features
- No narrow absorption

Line driven wind: time variability

Significant absorption line variability: ~5 year time scale

7/13/2010

Boston

Line driven wind: some numbers

Summary (Sim et al. 2010):

- **Fe Ka emission** for all orientations
 - Significant EW (~150 eV up to ~400 eV)
 - Broad (FWHM > 700 eV; cf. MCG 5-23-115, Braito et al. '07)
 - **Red-skewed wings** (cf. Auer '72, Titarchuck et al. '03)
- Narrow Ka absorption lines
 - Up to EW ~70 eV and v ~0.06 c
 - Significant variability: ~5 year time scale
 - Present for ~ 5 12 deg range (3 15 %, isotropic)
- Compton hump/soft emission lines
- Scattered/reprocessed light critical multi-D necessary!

Note:

- No tuning (also no improvement to model)
- Still 2D no realistic clumping

7/13/2010

2) Parameterised modelling (Sim, Long, Miller et al. 2008, 2010)

Parameterised model

- Perform radiative transfer simulations for model with fit parameters
 - Realistic disk wind scenario requires non-spherical geometry
 - Centrally concentrated power-law X-ray source
 - Include velocity law (outflow + rotation)
 - Smooth, stationary flow (described by \dot{M}_{wind})

Adopted geometry

Standard KWD disk wind (Knigge et al. 95)

Defined by 3 parameters:

」r_{in} 」r_{out} 」d

...spectrum depends on

 $\mu = \cos^{-1}\theta$

1st Grid of models

- Focused on Fe K region (Sim et al. 2008)
 - Primarily concerned with narrow absorption lines
 - How are they determined by wind parameters?
- Preliminary grid of models
 - Explored mass-loss rate and geometry params
 - High ionization states only
 - 45 models in total

1st Grid of models

Models showed wide range of EWs and blueshifts

Pounds et al. 2003 Turner et al. 2007 Braito et al. 2007

Grid of models

Also show a wide range of emission line shapes:

- P Cygni profiles
- extended red wings

7/13/2010

Boston

Back to PG1211+143

- Attempt quantitative fits to Fe K region
 - Choose PG1211+143 for pilot study
 - Work with complete stacked data from multiple epochs (Pounds et al. 2009)
- Improved code version (Sim et al. 2010)
 Less ionized material, self-consistent T_e
- Generated small grid of models

 Fit model parameters to data with Xspec

Back to PG1211+143

Imperfect but good fit: P Cygni profile red wing weak S XVI

Broadly supports conclusions of Pounds & Reeves: wide angle flow

7/13/2010

Boston

Conclusions and Prospects

- MC radiative transfer calculations for AGN outflows
 - Well-suited for transmitted/reprocessed radiation
 - Scattered light often critically important
- Wide range of features expected
 - Narrow blue-shifted absorption lines
 - Emission features with red wings
- Theoretical flow models predict observable features
 - Absorption line properties should vary in time
 - More quantitative work needed
- Plan to explore larger grids
 - Quantitative agreement in line profile possible (PG1211+143)
 - Working on bigger grids for XSPEC fitting

Method: the code

Adopted velocity

Standard KWD disk wind (Knigge et al. 95)

Keplerian rotation combined with outflow component of velocity:

$$v=v_{\infty}\left(1-rac{R_v}{l_s+R_v}
ight)^{eta}$$

Terminal velocity ~ escape speed

Grid of models

Models showed wide range of EWs and blueshifts

7/13/2010

Back to PG1211+143

Wind model predicts additional features at lower energies: C, N, O & Ne Comparison with RGS data to be done

7/13/2010

Boston

Role of scattered/reprocessed radiation on the temperature

7/13/2010

Boston