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Stellar winds
Supernovae

Behroozi et al. 2010 (AM)
Behroozi et al. 2013a (AM)
Reddick et al. 2013 (AM)
Moster et al. 2013 (pAM)
Moster et al. 2017 (pAM)
Guo et al. 2010 (pAM)
Wang & Jing 2010 (pAM)
Zheng et al. 2007 (HOD)

- Yang et al. 2012 (CLF)
Yang et al. 2009 (GG)
Hansen et al. 2009 (CL)
Lin et al. 2004 (CL)
Kravtsov et al. 2018 (AM4
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MWHH In emission

- integrated over large regions, low-res spectra
- typically 2T collisional ionization models
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MWHH In absorption towards point srcs

absorption
happens here

point source

line of sight




MWHH In absorption towards point srcs

- Why study it? ﬁng)repnt;ohnere
high-res spectra!
- detailed physics
- small scales
- present in all observations!

point source

line of sight




MWHH in absorption towards point srcs

- Why study it?

- many lines of sight!

Ponti+ 2023 / eROSITA

Circum-Galactic medium




MWHH In absorption towards point srcs

- alot of progress studying absorption towards
featureless blazars
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Ingredient 1. self-consistent
freatment

- we use global models of absorption by
the MW hot halo

- this way we get ALL of the
information that is available to us

- critically, no parameters are fixed

(not in AGN model & not in MW model!)

e g



Ingredient 2: A Bayesian approach

continuum
> Using MCMC / \
> Open parameter space
> Self-consistent continuum continuum
: . *PlEabs *ClEabs
> Deviance Information

Criterion (DIC): Which model component
Robust model selection is more supported by the data?

Spiegelhalter et al. 2002
Ogorzalek+2022




flux [photons cm2 s=1 A—1]

NGC 4051 700 ks of HETG

- agnostic Bayesian fitting: we never assume
where the absorption is coming from
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Ingredient 3. photoionization by
Cosmic Background

- most studies assume that the gas is in
collisional ionization equilibrium (CIE, e.g.
APEC model)

- but for low density gas, ionization by the

Cosmic Background can be important!
- see e.g. Churazov+2001, Khabibullin & Churazov
2019

- Cosmic Background is definitely there!
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Photoionization by Cosmic Background affects low

density gas as a function of density!

Ogorzalek+ in prep
r
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Many ions are affected, each differently
-> need to fit all of them at once in a self-consistent manner
Ogorzalek+ in prep




Cosmic Background PIE vs CIE
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- temperature consistent with virial (no 2nd T
Component) Ogorzalek+ in prep




Cosmic Background PIE vs CIE
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- nH and line width consistent with prev studies
- note: line width is not necessarily all turbulenceogosaiek+ in prep




CB PIE shows low abundances

— unnormalized probability

0 0.5 1.0 1.5 2.0
metallicity [Z5 ]
- our CIE model shows high abundance, consistent with
other CIE absorption work

- CB PIE model preferes low abundances Ogorzalek+ in prep



Can we constrain density?..



First ever direct density constraints!

— CBPIE

unnormalized probability

-5 —4 -3
log density/[cm ]

- data suggests that gas is low density and therefore CIE

assumption is not valid!

- this means we can measure the density for the first time!
Ogorzalek+ in prep
r
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ogoann@umd.edu

summary

> Robust Bayesian model selection allows to
model both AGN and MW absorption

> Self-consistent fitting takes advantage of all,
even small, spectral features

> Accounting for Cosmic Background
photoionization yields density constraints!

> Many deeper data sets around the sky read
to be analyzed!

> Many XRISM obs will include MW signal!

> Ask me about proposing for Resolve :) launch

Aug 25th!!



Line Emission Mapper:

. ' T & T ¥
L LEM 10°x10° fiekd, 40 ks (1005 depth) & g %

X-ray Probe for 2030s ==

~N

S. 10% counts / 2 eV

www.lem-observatory.org

- Wide FOV X-ray IFU (1eV)

- All-sky survey@2eV!! MWHH,
Fermi Bubbles, large galactic
structures...

- Also: CGM, IGM, SNRs, stars,
planets, AGN, XRBs, dust, and _
much more! ‘ G

from Fermi bubbles




