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@10 Shock structure: Rayleigh-Taylor instabilities

the contact discontinuity is subject
to the Rayleigh-Taylor instability

one SNR - need for > 2D modeling

consists of

3 waves:

- forward shock

- contact
discontinuity

- reverse shock

Tycho seen
by Chandra

0.95-1.26 keV
1.63 — 2.26 keV
4.10-6.10 keV

Rayleigh-Taylor analysis in radio:




(12 Shock structure: efficient acceleration

observed positions of the waves do not match pure hydrodynamical models

in Tycho and SN 1006
- evidence for back-reaction of accelerated particles on the shock

(investigation of the back-reaction in Cas A: )
1D self-similar simulations 2D/3D hydro simulations (of a slice)
with acceleration model mimicking acceleration
(of ) (by varying gamma of the fluid)
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our aim = make full 3D simulations (1/8 of a sphere) of SNR evolution
with space- and time- dependent acceleration and back-reaction



@219 Numerical simulations: the code ramses

Existing code, developed for cosmological simulations
Includes hydrodynamics / MHD + particles

- Godunov scheme (MUSCL)
- Adaptive Mesh Refinement (tree-based)
- parallelized (MPI)

from large scale structures...

... to SNRs

Adapting to SNRs: comoving grid
= work in the expanding frame

BUT:
- nhon-inertial frame - additional force
- quasi-stationnary flow - numerical difficulties



22  Numerical simulations: SNR initialization
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@23 Numerical simulations: particle acceleration

shock speed, magnetic field,
ambient density diffusion

and pressure coefficient
injection recipe: cutoff recipe:
- Pinj = { Pth,2 | | Pmax limited by
- fraction 77 age and size

semi-analytical non-linear model
solves the coupled system f(») — U(p)

back-reaction parameters:

- compression ratios (total, sub, precursor)
- pressure in gaz and in energetic particles
- escaping energy flux
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method:
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(at the shock
front only, time-
dependent)

shocked
region shrinks
- possible
diagnostic of
acceleration
efficiency, taking
into account
hydro instabilities



un-modified

modified

2D slice of the density profile from a 256”3 simulation
att =500 years

luminosity proportional to log(density)
color codes phases: ejecta / ambient

Perspectives: multi-fluid approach

Summary:

- SNR initialization: Chevalier
self-similar profiles

- SNR evolution: ramses
3D hydro code

- particle acceleration: Blasi
non-linear model

- particle back-reaction:
varying gamma

Next step:

- multi-fluid: thermal fluid
and non-thermal p+ / e-

- multi-lambda (projected) emission
- realistic SNR maps

to compare with observations
of eg. Chandra



The remnant structure

un-modified

consists of

3 waves: |
- forward shock , modified
- contact
discontinuity
- reverse shock

Tycho results from

seen by numerical

Chandra simulations

2D slice of the density profile

att =500 years

0.95 - 1.26 keV luminosity proportional to log(density)
1.63 — 2.26 keV

color codes phases: ejecta / ambient
4.10-6.10 keV



Diagnostics of the waves positions

observed positions of the
waves do not match
hydrodynamical models
- evidence for back-
reaction of accelerated
particles on the shock

Tycho & SN 1006

Chandra
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Particle acceleration: injection recipe

thermal fluid:
2 Maxwellian
simple prescription:
a fraction 1 of
particles crossing
the shock becomes
“cosmic-rays”
of momentum Pin;j
Pth,2  Pinj energy
i Pinj = fpth,z
self-adjusted injection: - B i : e o
77_37T T'sub )€ eXp( f)
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