Observations of

Collaborators: B. M. Gaensler T. Temim J. D. Gelfand E. van der Swaluw S. Chatterjee

Pulsar Bowshock Nebulae

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

Bow Shock PWNe: Introduction

- Formed by supersonic motion of pulsar through surrounding medium
 - can occur within host SNR or in ISM
 - different Mach numbers lead to different morphology
- Forward shock: stand-off distance defined by balance of wind with ambient pressure:

$$\frac{\dot{E}}{4\pi\omega R_0^2 c} = \rho_0 v_{PSR}^2 = \gamma \mathcal{M}^2 p_{amb}$$

• Termination shock – asymmetric

for $\mathcal{M} \sim 1$ – 3, $R_{TS}{}^{B}/R_{TS}{}^{F} \sim \mathcal{M}$

- for $\mathcal{M} >> 1$, $R_{TS}^{B}/R_{TS}^{F} \sim 5 6$
- Shocked ambient material
 - $\mbox{H}\alpha$ in partially-neutral material

- Shocked wind: radio/X-ray tail
 - broad tail from material shocked at $\varphi \sim \pi/2$
 - narrow tail from flow along axis
 - tail region broader, TS region smaller for low– \mathcal{M} shocks (such as within SNRs)
 - Note: for X-ray bow shocks, cometary shape is not described by classic Mach cone geometry

SNRs and PWNe in the Chandra Era

Boston 2009

Patrick Slane (CfA)

Bow Shock PWNe: Introduction

- Formed by supersonic motion of pulsar through surrounding medium
 - can occur within host SNR or in ISM
 - different Mach numbers lead to different morphology
- Forward shock: stand-off distance defined by balance of wind with ambient pressure:

$$\frac{\dot{E}}{4\pi\omega R_0^2 c} = \rho_0 v_{PSR}^2 = \gamma \mathcal{M}^2 p_{amb}$$

• Termination shock – asymmetric

for $\mathcal{M} \sim 1$ – 3, $R_{TS}^{B}/R_{TS}^{F} \sim \mathcal{M}$

for $\mathcal{M} >> 1$, $R_{TS}^{B}/R_{TS}^{F} \sim 5$ – 6

- Shocked ambient material
 - $\mbox{H}\alpha$ in partially-neutral material

- Shocked wind: radio/X-ray tail
 - broad tail from material shocked at $\varphi \sim \pi/2$
 - narrow tail from flow along axis
 - tail region broader, TS region smaller for low– \mathcal{M} shocks (such as within SNRs)
 - Note: for X-ray bow shocks, cometary shape is not described by classic Mach cone geometry

SNRs and PWNe in the Chandra Era.

Boston 2009

Patrick Slane (CfA)

Bow Shock PWNe in the ISM: The Mouse

VLA

- Extremely long PWN produced by PSR J1747-2958 (l ~ 17d₅ pc)
 - observe X-ray/radio emission from innermost regions, and long radio tail

Gaensler et al. 2004

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

Bow Shock PWNe in the ISM: The Mouse

- Extremely long PWN produced by PSR J1747-2958 (l \sim 17d $_{\rm 5}$ pc)

 observe X-ray/radio emission from innermost regions, and long radio tail

• X-ray image shows compact emission around pulsar, "tongue" region behind pulsar, and extended tail

 $-L_{x}/\dot{E} = 0.02$

- tongue corresponds to TS region
- standoff distance implies $\mathcal{M} \ge 60$ $\therefore v \approx 600 \text{ km s}^{-1}$
 - assuming motion through warm ISM
- consistent w/ $R_{TS}^{B}/R_{TS}^{F} > 5$
- X-ray tail is shocked wind from back TS region
 - outer tail shows steeper spectrum
 - long, broad radio tail is combination of swept-back wind w/ that from behind TS

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

Bow Shock PWNe in the ISM: The Mouse

Issues:

- Compact "head" of X-ray emission appears extended
 - should just be the pulsar
 - possibly a pileup effect, or is this something similar to clumps seen "inside" TS region in Crab and other PWNe?
- Faint halo observed ahead of bow shock
 - unlikely to be shocked ISM
 - probably dust scattering halo
- X-ray emission in "tongue" region has a "filled" morphology
 - associated with finite thickness due to ion gyration, along with Doppler beaming

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

Going Supersonic

- If pulsar is moving through SNR, it will encounter reverse shock first in direction of motion
 - relic PWN is pushed back from pulsar
 - nebula around pulsar begins being swept into a cometary shape
- SNR temperature drops toward outer shell, reducing sound speed
 - for Sedov-phase SNR, pulsar motion becomes supersonic at R ≈ 2R_s/3
 - beyond this a true bow shock forms

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

Going Supersonic

Boston 2009

1.0

Bow Shock PWNe in SNRs: G189.22+2.90

- G189.22+2.90 is a bow shock PWN in IC 443 (t_{SNR} ~30,000 yr)
 - orientation suggests non-uniform medium for SNR (plus "crosswinds" for PWN)

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

Bow Shock PWNe in SNRs: G189.22+2.90

- G189.22+2.90 is a bow shock PWN in IC 443 (t_{sNR} ~30,000 yr)
 - orientation suggests non-uniform medium for SNR (plus "crosswinds" for PWN)
- The standoff distance is resolved
 - indicates v \approx 230 km s⁻¹
- "Tongue" feature traces TS region $\mathcal{M} = \gamma^{-1/2} R_{TS}^{B}/R_{TS}^{F} \approx 1.2$
 - low Mach number consistent w/ high sound speed in SNR interior
 - "tongue" is filled, like in Mouse
 - tail is less elongated and broader than that for Mouse, consistent with small ${\mathcal M}$
- Pressure balance w/ SNR (kT ~0.2 keV) suggests Ė ≈5 × 10³⁷ erg s⁻¹

SNRs and PWNe in the Chandra Era

PWNe in Transition? G327.1-1.1

1.0'

- X-ray observations reveal compact core at tip of radio finger
 - trail of emission extends into nebula

- L_x suggests $\dot{E} \sim 10^{37.3}$ erg s⁻¹

- Compact core is extended, and surrounded by cometary structure - tail extends back toward radio PWN
- Estimates of pressure, velocity, and E suggest entire TS shock region extent of \sim 3.5 arcsec - similar to extent of inner core, but this doesn't explain cometary shape
- If cometary segment is TS, then $R_{TS}^{B}/R_{TS}^{F} > 3.7$, suggestive of high-Mach number - inconsistent w/ being inside SNR...
- Curious prong-like structures extend in direction opposite the relic PWN
 - nothing seems consistent with a standard bow shock PWN...
 - perhaps in transition to this stage?

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

PWNe in Transition? G327.1-1.1

- Overall morphology of SNR and PWN suggests that an asymmetric reverse shock has played a role
 - PWN has apparently been disturbed by RS, and is now re-forming around pulsar
- RS appears to have approached more rapidly from the northwest
 - pulsar appears to be traveling northward
 - combination produces offset between NS and SNR center, as well as displacement of PWN
- Prong-like structures connect to a bubble
 - appears to be blown by the pulsar into the SNR interior, apparently in the region recently crossed by the reverse shock

Cruising at the Reverse Shock

- Note that in pre-Sedov phase, sound speed is lower in reverse shock region than in outer SNR
 - bow shocks can start to form soon after pulsar encounters reverse shock
 - this can have implications for inferences about pulsar velocities based on presence of bow shock structure

Patrick Slane (CfA)

SNRs and PWNe in the Chandra Era

Cruising at the Reverse Shock

- Note that in pre-Sedov phase, sound speed is lower in reverse shock region than in outer SNR
 - bow shocks can start to form soon after pulsar encounters reverse shock
 - this can have implications for inferences about pulsar velocities based on presence of bow shock structure

Summary

I. Observations of Bow Shock PWNe

- High-resolution studies reveal similar underlying structure to static PWNe
- Morphology provides measure of Mach number
- Knowledge of surroundings provides Ė, pulsar velocity
- Questions remain on detailed structure of innermost regions

II. Transition Objects

- As pulsars approach supersonic speeds, PWN morphology is distorted toward bow shock geometry
- More modeling required to study the structure in this stage

III. Bow Shocks Near the Reverse Shock

- At least some fast pulsars should form bow-shock-like structures well inside SNRs, as they pass through the reverse shock
- This has impact for interpretation of pulsar velocities, and possibly as a probe of ejecta

