
Boston 2009!Patrick Slane (CfA)! SNRs and PWNe in the Chandra Era!

Observations of!

Pulsar Bowshock Nebulae!

Collaborators:!
B. M. Gaensler!
T. Temim!
J. D. Gelfand!
E. van der Swaluw!
S. Chatterjee!



Boston 2009!Patrick Slane (CfA)! SNRs and PWNe in the Chandra Era!

Bow Shock PWNe: Introduction!
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•  Formed by supersonic motion of pulsar!
  through surrounding medium!
  - can occur within host SNR or in ISM!
  - different Mach numbers lead to different!
    morphology!

•  Forward shock: stand-off distance defined !
  by balance of wind with ambient pressure:!
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•  Termination shock – asymmetric!
    for M ∼ 1 – 3, RTS

B/RTS
F ∼ M 

    for M >> 1, RTS
B/RTS

F ∼ 5 – 6!

•  Shocked ambient material!
  - Hα in partially-neutral material!

•  Shocked wind: radio/X-ray tail!
  - broad tail from material shocked at φ ∼ π/2!
  - narrow tail from flow along axis!
  - tail region broader, TS region smaller for!
    low-M shocks (such as within SNRs)!
  - Note: for X-ray bow shocks, cometary shape is!
    not described by classic Mach cone geometry!

Gaensler & Slane 2006!
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•  Shocked ambient material!
  - Hα in partially-neutral material!

•  Shocked wind: radio/X-ray tail!
  - broad tail from material shocked at φ ∼ π/2!
  - narrow tail from flow along axis!
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    low-M shocks (such as within SNRs)!
  - Note: for X-ray bow shocks, cometary shape is!
    not described by classic Mach cone geometry!

PSR J0437-4715!

Fruchter et al.!
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Bow Shock PWNe in the ISM: The Mouse!
6 arcmin 

VLA!

Gaensler et al. 2004!

•  Extremely long PWN produced by!
  PSR J1747-2958 (l ∼ 17d5 pc)!
  - observe X-ray/radio emission from!
     innermost regions, and long radio tail !
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Bow Shock PWNe in the ISM: The Mouse!
•  Extremely long PWN produced by!
  PSR J1747-2958 (l ∼ 17d5 pc)!
  - observe X-ray/radio emission from!
     innermost regions, and long radio tail !

•  X-ray image shows compact emission!
  around pulsar, “tongue” region behind!
  pulsar, and extended tail!
  - Lx/Ė = 0.02!
  - tongue corresponds to TS region!
  - standoff distance implies M ≥ 60!

#∴ v ≈ 600 km s-1 !
    assuming motion through warm ISM!
  - consistent w/ RTS

B/RTS
F > 5 !

•  X-ray tail is shocked wind from back!
  TS region!
  - outer tail shows steeper spectrum!
  - long, broad radio tail is combination of!
    swept-back wind w/ that from behind TS!

Gaensler et al. 2004!
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Bow Shock PWNe in the ISM: The Mouse!
Issues:!

•  Compact “head” of X-ray emission!
  appears extended!
  - should just be the pulsar!
  - possibly a pileup effect, or is this !
    something similar to clumps seen !
    “inside” TS region in Crab and other!
    PWNe?!

•  Faint halo observed ahead of bow!
  shock!
  - unlikely to be shocked ISM!
  - probably dust scattering halo!

•  X-ray emission in “tongue” region!
  has a “filled” morphology !
  - associated with finite thickness due to !
     ion gyration, along with Doppler !
     beaming!Gaensler et al. 2004!

Gaensler et al. 2004!
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Going Supersonic!
•  If pulsar is moving through SNR, it!
  will encounter reverse shock first!
  in direction of motion!
  - relic PWN is pushed back from pulsar!
  - nebula around pulsar begins being!
    swept into a cometary shape !

•  SNR temperature drops toward !
  outer shell, reducing sound speed!
  - for Sedov-phase SNR, pulsar motion!
    becomes supersonic at R ≈ 2Rs/3 !
  - beyond this a true bow shock forms!

van der Swaluw et al. 2004!



Boston 2009!Patrick Slane (CfA)! SNRs and PWNe in the Chandra Era!

Going Supersonic!
•  If pulsar is moving through SNR, it!
  will encounter reverse shock first!
  in direction of motion!
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Bow Shock PWNe in SNRs: G189.22+2.90!

Olbert et al. 2001!

•  G189.22+2.90 is a bow shock PWN!
  in IC 443 (tSNR ∼30,000 yr)!
  - orientation suggests non-uniform medium !
    for SNR (plus “crosswinds” for PWN)!
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Bow Shock PWNe in SNRs: G189.22+2.90!

Gaensler et al. 2006!

•  G189.22+2.90 is a bow shock PWN!
  in IC 443 (tSNR ∼30,000 yr)!
  - orientation suggests non-uniform medium !
    for SNR (plus “crosswinds” for PWN)!

•  The standoff distance is resolved!
  - indicates v ≈230 km s-1!

•  “Tongue” feature traces TS region!
     M = γ-1/2 RTS

B/RTS
F ≈ 1.2!

  - low Mach number consistent w/ high!
    sound speed in SNR interior!
  - “tongue” is filled, like in Mouse!
  - tail is less elongated and broader than!
    that for Mouse, consistent with small M !

•  Pressure balance w/ SNR (kT ∼0.2 keV)!
  suggests Ė ≈5 × 1037 erg s-1!
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PWNe in Transition? G327.1-1.1!
Temim et al. 2009! •  X-ray observations reveal compact!

  core at tip of radio finger!
  - trail of emission extends into nebula!
  - Lx suggests Ė ~ 1037.3 erg s-1 !

•  Compact core is extended, and!
  surrounded by cometary structure!
  - tail extends back toward radio PWN!

•  Estimates of pressure, velocity, and Ė suggest entire!
  TS shock region extent of ∼3.5 arcsec!
  - similar to extent of inner core, but this doesn’t explain!
    cometary shape!

37”!

10”!

120”!

•  If cometary segment is TS, then RTS
B/RTS

F > 3.7, suggestive of high-Mach number !
  - inconsistent w/ being inside SNR…!

•  Curious prong-like structures extend in direction opposite the relic PWN!
  - nothing seems consistent with a standard bow shock PWN…!
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PWNe in Transition? G327.1-1.1!
Temim et al. 2009!

•  Overall morphology of SNR and PWN!
  suggests that an asymmetric reverse !
  shock has played a role!
  - PWN has apparently been disturbed by RS,!
    and is now re-forming around pulsar!

•  RS appears to have approached more !
  rapidly from the northwest!
  - pulsar appears to be traveling northward!
  - combination produces offset between NS and!
    SNR center, as well as displacement of PWN!

•  Prong-like structures connect to a bubble!
  - appears to be blown by the pulsar into the!
    SNR interior, apparently in the region recently!
    crossed by the reverse shock
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Cruising at the Reverse Shock!

van der Swaluw et al. 2001 
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•  Note that in pre-Sedov !
  phase, sound speed is!
  lower in reverse shock!
  region than in outer!
  SNR!
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Cruising at the Reverse Shock!

•  Note that in pre-Sedov !
  phase, sound speed is!
  lower in reverse shock!
  region than in outer!
  SNR!
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I.  Observations of Bow Shock PWNe!
#- High-resolution studies reveal similar underlying !

        structure to static PWNe!
      - Morphology provides measure of Mach number!
      - Knowledge of surroundings provides Ė, pulsar velocity!
      - Questions remain on detailed structure of innermost regions!

II. Transition Objects!
      -  As pulsars approach supersonic speeds, PWN morphology is distorted!
         toward bow shock geometry!
      -  More modeling required to study the structure in this stage !

III. Bow Shocks Near the Reverse Shock!
      - At least some fast pulsars should form bow-shock-like structures!
        well inside SNRs, as they pass through the reverse shock!
      - This has impact for interpretation of pulsar velocities, and!
        possibly as a probe of ejecta!

Summary!


