

International X-ray Observatory (IXO)

The International X-ray Observatory (IXO) Mission Configuration

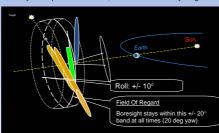
Nicholas E. White¹, Arvind N. Parmar², Hideyo Kunieda³, for the International X-ray Observatory Team

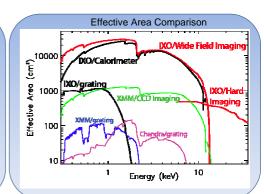
¹NASA/GSFC, ²ESA/ESTEC, Netherlands, ³Nagoya University, Japan

The IXO is an inter-agency project with participation from ESA, JAXA, and NASA. The IXO will be a major new astronomical space based facility in the 2020 timeframe to address three timely, high priority science topics:

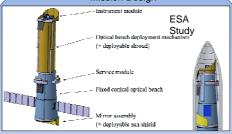
- Black Holes and Matter under Extreme Conditions
 Galaxy Formation, Galaxy Clusters, and Cosmic Feedback
 Life Cycles of Matter and Energy

To address these topics the mission will provide a factor of 10 gain in telescope aperture with an effective area of 3 sq m at 1 keV and 5 arc sec angular resolution. The next generation instruments are a X-ray Microcalorimeter Spectrometer (XMS), Wide Field Imager (WFI) and Hard X-ray Imager (HXI), a X-ray Grating Spectrometer (XGS), a High Time Resolution Spectrometer (HTRS) and an X-ray Polarimeter (XPOL). This presentation summarizes the mission implementation based on NASA, ESA, and JAXA design studies.

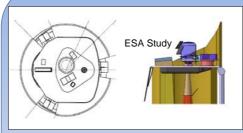

IXO will bring a factor of 10 gain in telescope aperture combined with next generation instrument technology to realize a quantum leap in capability


NASA Project Manager: Jean Grady ESA Study Manager: Philipe Gondoin JAXA Study Manager: Tadayasu Dotani Key IXO Performance Requirements

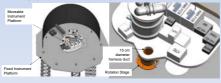
_	Mirror Effective Area	3 m ² @ 1.25 keV 0.65 m ² @ 6 keV with a goal of 1 m ² 150 cm ² @ 30 keV with a goal of 350 cm ²	Black hole evolution, large scale structure, cosmic feedback, EOS Strong gravity, EOS Cosmic acceleration, strong gravity
	Spectral Resolution	$\Delta E = 2.5$ e/V within 2 x 2 urc min (0.3 – 7 keV) . $\Delta E = 10$ e/V within 5 x 5 arc min (0.3 – 7 keV) . $\Delta E = 10$ e/V within 5 x 5 arc min (0.3 – 7 keV) . $\Delta E = 10$ keV $E = 1000$ from 0.3 – 1 keV with an area of 1,000 cm ² for point sources $\Delta E = 1$ keV within 8 x 8 arc min (10 – 40 keV)	Black Hole evolution, Large scale structure Missing baryons using tens of background AGN
	Mirror Angular Resolution	S5 arc sec HPD (0.1 – 7 keV) S30 arc sec HPD (7 - 40 keV) with a goal of 5 arc sec	Large scale structure, cosmic feedback, black hole evolution, missing baryons Black hole evolution
	Count Rate	1 Crab with >90% throughput. ΔE < 200 eV (0.1 – 15 keV)	Strong gravity, EOS
	Polarimetry	1% MDP at 3 σ confidence on 1 mCrab in 100 ksec (2 - 6 keV)	AGN geometry, strong gravity
	Astrometry	1 arcsec at 3σ confidence	Black hole evolution
	Absolute Timing	50 µsec	Neutron star studies


IXO Launch, Orbit, and Mission Life

Launch on an Atlas V 551 or Ariane V in 2020 Direct launch into an 800,000 km semi-major axis L2 orbit 5 year required mission life, consumables for 10 year goal


Mission Design

NASA and ESA mission studies demonstrate that the mission is feasible with no technical challenges The two separate and independent studies result in very similar implementation approaches



Instrument Module

NASA Study

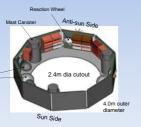
- es transfer heat between electronics and radia ent Platform and on Fixed Instrument Platform

On moveable instrument platform, with grating CCD fixed on fixed instrument platform

Payload Summary

Flight Mirror Assembly (FMA) 5 arc sec grazing incidence, high Instruments on translating platform

- X-ray Micro-calorimeter Spectrometer (XMS)


 0.3 to 7 keV with 2.5 eV & 5 arc min FOV
- Wide Field Imager (WFI)

 0.1 to 15 keV with < 150 eV & 18 arc min FOV
- Hard X-ray Imager (HXI)
- Extends band pass to 40 keV
 High Time Resolution Spectro
 Bright source capability
 X-ray Polarimeter (XPOL)
- Fixed Instrument (always observing)
- X-ray Grating Spectrometer (XGS)
 Dispersive from 0.3 to 1 keV with R ~ 3000
- CCD camera for read
- Observatory Level Mass Rack up NASA Study

Spacecraft Bus Module - NASA Study

- 3 mast canisters fit inside the Bus
- 9 equipment panels provide plenty of room for avionics & harness
- Large hole in bottom and top decks necessary for the X-ray beam from the FMA and gratings
- interface between metering structures and the bus frame is titanium fittings
- ulsion tanks on sun-s
- Avionics are mounted to equipment panels on the anti-sun side of spacecraft. Heat conducts through to exterior of panels to zones of white NS43G thermal paint. Heat is radiated away

Deployable Structure Components – NASA Concept

IXO Schedule - For Launch in 2021