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Compact Symmetric Objects (CSOs)
CSOs are a subset of active galaxies known for their very young radio structures (a few hundred to a few thousand years
old). Their radio emission is dominated by compact symmetric lobes/hotspots with sizes smaller than 1 kpc (see Fig. 1). : @ i
Why are they interesting? o 2F -
Their very young radio structures provide a unique opportunity to study the initial stages of active galactic nuclei evolution. ::,' . ol
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Compact Radio Lobes as an X-ray Emission Source? i A,
We propose that the compact lobes of CSOs may serve as a source of X-ray continuum emission, as they constitute a ‘
reservoir of relativistic electrons that produce high-energy radiation through the Comptonization of IR and UV photons. I 1
During the earliest stages of the jet's lifetime, this emission is then reflected from the torus, adding fluorescent Fe Ka lines @ £
and the reflection component (see the cartoon in Fig. 2). By 9§ ¢ 4y § g
2 1 0 -1 2 -3 -4 -5 6
MilliARC SEC

Spectral Energy Distribution (SED) modelling

Figure 1. Radio VLA map at 22.23 GHz frequency of the CSO
J1511+0518. CSO linear sizes are <1 kpc (Orienti et al. 2006).

We employed the model by Stawarz et al. (2008) to investigate the source of high-energy

emission in three heavily obscured CSOs: J1511+0518, 0Q208, and J2021+6136, lobes X-raygg
characterized by a Fe Ka line in the X-ray spectrum and radio sizes in the 7—-25 pc range. The

model self-consistently describes the broad-band emission of the lobes based on:

e The dynamical model for the expansion of double-double radio sources (Begelman & Cioffi,

1989).

e Various prescriptions for the energy spectrum of ultra-relativistic electrons injected into the

lobes at the terminal hotspots.

e Adiabatic energy losses and radiative cooling due to synchrotron emission and inverse
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Compton scattering of soft photon fields originating from the obscuring torus (IR), accretion !emiSS/ior‘f
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We calculate characteristic ISM densities corresponding the X-ray absorbing matter concentrated in either
the source size (nhigh), Chandra extraction region (n,_ ) and an intermediate value (n_ ).

Figure 2.schematic view of a young radio source, where the X-ray continuum emission is
produced within compact radio lobes (Krél et al. 2024).

Results: Origin of X-ray Emission and ISM Density Constraints
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Figure 4. SEDs of the X-ray obscured CSOs. Green - synchrotron radio emission. Blue - synchrotron self-Compton. Red - IC scattering of the IR emission. Purple - IC scattering of the UV emission.IC scattering of the visible light is negligible. Models assume
Ue=10UB (Ue - electron energy density, UB - magnetic field energy density) and the ISM density corresponding to the X-ray absorption occurring on the scales comparable to the linear sizes of the radio structures.

The origin of the X-ray emission:
e In two sources, X-rays can be fully explained as due to the the radio lobe

emission (IC of infrared in J1511, and IC of UV in 0Q208).
e In J2021 (the X-ray brightest of the three), an additional X-ray component is

The ISM density surrounding the expanding radio lobes:

e J1511: ISM density n,~4,000 cm™.

e 0Q208: either high ISM density n,~20,000 cm™ or that the radio
lobes are close to equipartition (Ue ~ UB).

required (for example an X-ray corona or an X-ray jet). Its luminosity

depends on the Ue/Ub ratio and the ISM density. Lobes closer to
equipartition and/or expanding in a denser ISM require a more luminous
jet/corona.

The radio data require a steep high-energy slope of the electron
energy distribution, which results in all three sources being quiet in
gamma-ray frequencies.

For a detailed description of the modeling procedure and a

comprehensive discussion of the results, see:
Krél, D. L., et al. (2024), ApJ, Vol. 966.
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