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Abstract

We present a new method to distinguish between different states (e.g., quiescent and flaring) in astronomical
sources with count data. The method models the underlying physical process as latent variables following
a continuous-space Markov chain. For the underlying state process, we consider several continuous-space
hidden Markov models of varying complexity, under which we can infer the source’s underlying physical state
at any given time. We then dichotomize these predictions using a finite mixture model to produce binary
classifications. Applying this method to X-ray data from the active dMe flare star EV Lac to distinguish
quiescent from flaring states, we find that a first-order autoregressive process efficiently separates the two
states: flaring occurs over 30–40% of the observations and is characterized by higher temperatures and
emission measures, and we can also identify a well-defined persistent quiescent state.

Introduction

Figure 1: Two light curves of EV Lac (ObsID 01855 from De-
cember 2001 and ObsID 10679 from March 2009), each split into
hard (1.5–8.0 keV) and soft (0.3–1.5 keV) bands

• Certain stars produce sporadic short-duration
flares from their coronae

• We want to understand the proportion of time
these stars spend in flaring versus quiescent states

• For nearby stars like the sun, we have much
directly-observed “continuous” information (e.g.,
[1])

• For distant stars emitting X-rays, we have only
light curves computed from the time and energy of
photons recorded by X-ray telescopes like Chandra

• Most previous work applied ad-hoc rules of
black-box/model-free learning methods to estimate
flaring states; the best guess for EV Lac is 39% of
time spent flaring [2]

• Our new approach is to model the flaring and
quiescent states in two stages using hidden Markov
models:

· · · Xt−2 Xt−1 Xt Xt+1 Xt+2 · · ·

Yt−2 Yt−1 Yt Yt+1 Yt+2

Figure 2: A graphical model representing the standard discrete-
time HMM dependence structure

Stage 1: HMMs for Flaring Sources

• A (discrete-time) hidden Markov model (HMM)
assumes that a latent Markov process
X1:T = (X1, X2, . . . , XT ) generates observed data
Y1:T = (Y1, Y2, . . . , YT ) such that Ys and Yt are
conditionally independent given X1:T

• When the state space X is finite — say
X = {1, 2, . . . , K} — the HMM is a
discrete-space HMM, with initial probabilities
P (X1 = i), transition probabilities
P (Xt = j | Xt−1 = i), and state-dependent mass
functions P (Yt = yt | Xt = i) for i, j ∈ X

• We can calculate and maximize the likelihood
efficiently and then predict the hidden states at
each time t — however, the conditional
independence assumption fails for our data:

Figure 3: December 2001 soft-band light curve colored with
classifications based on 2- and 3-state HMMs

• In contrast, for continuous-space HMMs, the
underlying Markov chain takes values in X = Rd,
which allows for smooth transitions between
quiescence to flaring

• While the likelihood is now intractable, we can
approximate it using a discrete-space likelihood

• We consider several variants of the model and
select a VAR(1) process on a line:
Yt | Xt ∼ Pois(w · β1 · eXt) · Pois(w · β2 · eσ2Xt/σ1),

Xt = ϕXt−1 + εt, εt
iid∼ N (0, σ2)

Stage 2: Classification Into Flaring
and Quiescent Intervals

• Once the Stage 1 HMM is fit, we make posterior
state predictions for each state Xt as
X̂t = argmax

xt∈X
Pθ̂ (Xt = xt | Y1:T = y1:T )

• We then view the predictions X̂1, . . . , X̂T as fresh
“data” and approximate their distribution by a
2-component mixture: α · F1 + (1 − α) · F2

• Assuming that the distribution F2 corresponds to
“flaring”, (1 − α) is the overall proportion of time
spent in this state

• If we see a clear sustained quiescent
period [t1, tq], we use X̂t1:tq

as training data for a
KDE for the quiescent mixture component

• We approximate the flaring mixture component
with a step function, and fit the entire mixture
using a custom-designed EM algorithm

• This yields 100% · (1 − α̂) ≈ 45% for the
September 2001 EV Lac data, agreeing with [2]

• If we don’t see such a quiescent period, we
use a 3-component normal mixture which is easily
fit with an EM algorithm

• Applying this method to the March 2009 EV Lac
data yields 100% · α̂3 ≈ 27%, also agreeing with [2]

Figure 4: Fitted component densities overlaid on a histogram
of the predicted states X̂1, . . . X̂T for September 2001

Figure 5: Posterior flaring state probabilities used to color the
soft-band counts for September 2001
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