
URL: http://cxc.harvard.edu/ciao3.4/slang−variables.html
Last modified: December 2006

AHELP for CIAO 3.4 variables Context: slang

Jump to: Description See Also

Synopsis

Variables in S−Lang

Description

S−Lang allows you to define variables that hold scalars, arrays, structures, or user−defined data types. Variable
names in S−Lang are case sensitive, and the data type of a variable is determined upon assignment:

 variable foo, bar, baz;
 foo = 5;
 bar = [0, 5, 10, 15, 20];
 baz = "This is a string.";

After these assignments, foo is an integer (Integer_Type), bar an array (Array_Type) of integers, and baz a string
(String_Type). It is also possible for a variable to be a structure, with fields that store data of different types:

 variable fileinfo = struct { pathname, filename, nrows };
 variable foo = @fileinfo;
 foo.pathname = "/data/ciao/";
 foo.filename = "evt2.fits";
 foo.nrows = 100;

The above defines a variable fileinfo to be a structure, and then populates the elements of this structure. Structures
are used to store data returned by Varmm routines, where the data is stored in arrays, and the metadata − such as
the number of rows in a table − are stored in fields beginning with a single underscore (ie '_') character. Note that
the "@fileinfo" command uses the deference operator (@) to create an instance of the fileinfo structure.

The Varmm print() function can be used to view the content of a structure, and S−Lang contains a number of
intrinsic functions, such as typeof(), for manipulating and querying variable types:

 chips> print(foo)
 pathname = /data/ciao/
 filename = evt2.fits
 nrows = 100
 chips> print(typeof(foo))
 Struct_Type
 chips> print(typeof(foo.filename))
 String_Type
 chips> print(typeof(foo.nrows))

Ahelp: variables − CIAO 3.4

variables 1

http://cxc.harvard.edu/ciao3.4/slang-variables.html

 Integer_Type

Structures are used to store data read in by a Varmm function such as readfile(), or if you wish to create a FITS
file using writefits(). In the following, we read in an ASCII file containing two columns into a structure, and then
use the print() function to view its contents.

 sherpa> AGauss = readascii("phas.dat");
 sherpa> print(AGauss)
 _filename = phas.dat
 _path = /data/analysis/
 _filter = NULL
 _filetype = 1
 _header = NULL
 _ncols = 2
 _nrows = 128
 col1 = Float_Type[128]
 col2 = Float_Type[128]

Here we use another Varmm function, readfile(), to read in selected columns from an event list. Note that the
filename can contain DM filters − here we restrict access to the first ten rows and select only the time and status
columns:

 chips> evt = readfile("evt2.fits[#row=1:10][cols time,status]")
 chips> print(evt)
 _filename = evt2.fits
 _path = /data/ciao/
 _filter = [#row=1:10][cols time,status]
 _filetype = 4
 _ncols = 2
 _nrows = 10
 time = Double_Type[10]
 status = UChar_Type[10,4]

See Also

chips
chips, chips_eval

modules
varmm

sherpa
sherpa_eval

slang
math, overview, slang, tips

tools
ascii2fits

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/ciao3.4/slang−variables.html

Last modified: December 2006

Ahelp: variables − CIAO 3.4

2 See Also

http://cxc.harvard.edu/ciao3.4/slang-variables.html

