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Quasi-Periodic Eruptions
Miniutti et al. 2019, Arcodia et al. 2021, Chakraborty et al. 2021
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Franchini et al. 2023

 X-ray QPEs are puzzling eruptions associated to the nuclei of nearby galaxies. Their soft (thermal),
repeating bursts appear associated with Tidal Disruption Events.

* [he ones above happen every 9 hours. The host is a Seyfert 2 galaxy at z=0.018

* Possible explanations: Mass transter? Gravitational Lensing? Collisions between orbiting compact
object and accretion disk?



These findings have been serendipitous and have
started whole new lines of research

X-ray datasets are a fertile ground for the discovery
of astrophysical objects that inform models of
gravitational wave emission, extrasolar planet, ano
the most violent explosions of the Universe.

How do we efficiently harvest X-ray catalogs to
enable new science?



A fundamental transformation

Over the last ~10 years, machine learning has transformed astrophysics
research in at least two ways:

1. By improving the efficiency at which astrophysical objects can be
found and classified in large surveys, including in X-ray datasets.

2. By speeding up the inference of model parameters, for example
when performing X-ray spectral fitting. Bayesian treatment.

Are the simulations on which we train ML algorithm realistic enough®

Can we effectively use neural networks to recover full posteriors tor
relevant parameters”



What iIs machine learning anyway”?

Real world input

Artificial intelligence

6000 square feet,
4 bedrooms,
previously sold for

$235K in 2005,
1 parking spot.

Machine learning

Supervised Unsupervised \( Reinforcement
learning learning learning

Deep learning

“The steak was terrible,
the salad was rotten, and

the soup tasted like socks”

Model input

Model output  Real world output

(60001
4
235
2005
- 1 -

Deep learning
model

Predicted price
is $340k

Deep learning
model

Freezing point
s -12.9°C
Boiling point
is 56.4°C

Deep learning
model

Negative

Prince 2023,




Superwsed VS.

Unsupervised learning Supervised learning

Unsupervised

1. Inunsupervised learning, we
try to learn the function that
describes the probability of the
data, we do not have a
GROUND TRUTH.

Variable 1
Variable 1

2. In supervised learning, we try
to learn the probability of a
abel, given the data, the
function that maps inputs to
avels. We do have a GROUND
TRUTH.
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Variable 2 Variable 2
Morimoto et al. 2021



The Chandra Source Catalog Version 2.1

~408k (~93k+) individual sources in the sky ~15.5k individual Chandra Observations
~1.3 million individual detections Detection performed on stacked observations

~730 square degrees (~2% of the sky) i
ase % *"' S, G , ) &f o | .
- , Ll & Al

o P

Astrometry tied to the .C.iAIA ' ' ' ~36k SDSS counterparts provided
reference frame. € = 0.29" (95% cont.) + ~17k with SDSS spectra




The building block of any X-ray survey are lists
of Individual photon detections

* Unlike optical data, X-ray detections
are a collection of individual photon
recordings of different length.

(@)

* [hese events effectively constitute a
time series of photon energies, from
which light curves and spectra are
obtained.

energy [MeV]
NN

2

10 100 1000 1 2 5 10 2030
Number of detections per stack Number of observations per stack

* All relevant physical information is
ultimately contained in the event list.

21 reg " '+ e - - c
i Y Wi, * No automatic alert system exists for
o . M serendipitous transients in Chandra,

b+ PN XMM exists.
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Fast X-ray Transients (FXTs)

' : C Obsld : 14444 Obsld : 14603
* Fast X-ray transients are rapid bursts of X-ray emission E } -
typically located in extragalactic environments. E | ER
© O
| | j J b i
* Spectrally soft, lasting between a few minutes to hours. S e T

Typically discovered serendipitously, days to years after Obsld : 16450 Obsld : 16454(XT1)
the bursts. Optical counterpart are rare, but a third of the
~35 Known cases are associated with host galaxies.
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DECam:g FXRTS8 DECam:r FXRTS8 DECam: i FXRT 8

* Shock breakout emission in core-collapse supernovae ‘\ e .\. ‘f\. '
LW W
AL - N :

* TDE: Accretion of part of a white dwarf into an IMBH. 2
el ._‘ =18 J A ._]

%

« BNS mergers: falloack accretion, magnetar related?

DECam:g FXRT9 !, DECam:r FXRT9 DECam:i FXRT 9

* Dedicated search in CSC using unbind light curves. \”‘0 {. -
Methods are limited in time resolution. . _ : N

g o A ]

Quirola-Vasquez et al.



A possible magnetar origin for FXTs

 BNS mergers resulting in a massive rapidly spinning
Free zone magnetar produce X-ray afterglows with higher solid
angles compared to the sGRB (Zhang 2013).

7

S

~ Lx(erg/s)

Such afterglows can be used to probe EM counterparts
to GW events that lack a y-ray counterpart, and to
search for massive millisecond magnetars.

Time (Soéonds)v

-—) 7 e Light curve profile consistent with spin down luminosity
of a rapidly spinning magnetar (e.g. Xue et al. 2019).

Trapped zone

Ejecta 1<1

Several Candldates
|dent|f|ed in CS’*’.‘-%?};;Ededlcated:_{’
- searohes

Time(se(':onds)“

Not to scale t>t (1<1)

Quirola-Vasquez et al. Time(s) Time(s)
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The redshift evolution of ULXs out to z~0.5
(Barrows et al. 2019, 2022)

J112833.41+583346.20
z=0.010

' 0 ‘ .
0
25"

7.0 kpc

o Parent Sample
m ULX Candidates

0.1 0.20.3
N/Niot

ULXs (Lx > 1039 ergs/s) and HLXs (Lx > 1041 ergs/s)
appear to accrete above the Eddington limit.

Uniform sample of ~260 off-nuclear ULXs with
redshifts z<0.5

Largest sample of intermediate redshift ULXs, extends
to higher redshifts with respect to other catalogs.

Systematically enhanced sSFR in ULX host galaxies
compared with the parent population, suggesting an
X-ray binary nature for the ULXs.

Similar study of HLXs finds that fraction of them are
consistent with IMBHSs Injected into galaxies through

mergers (not in GCs), CSC enables spatially

resolved studies of ULX
and HLX hosts!



Why machine learning in high energy astrophysics

e X-ray datasets are becoming larger and richer, Recall CM
but they remain unlabeled and unannotated. The -
vast majority of sources remain unclassified.

e Astrophysical anomalies of relevance for
gravitational wave science, binary evolution, anad
galaxy assembly continue being identified In
archival datasets, mostly serendipitously.
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 Parameter inference in the presence of
instrumental effects, such as pileup, remain See research by the Kargalisey aroup at GWU:

challenges. Data-driven approach offer a way Yang et al. 2022, 2024, Chen et al. 2023, 2024,
forward See talk by Jeremy Hare

Predicted Class




Unsupersvised Classitication using Gaussian Mixtures

Perez-Diaz et al. By crossmatching the clusters with existing catalogs of
CSC Properties: 2024MNRAS.528.4852P independent classifications, we assign probabilistic
classes based on distance

 Hardness ratios 2CXO J031948.1+413046, 12036

o Variability

Published Catalog
of >15k probabilistic
Classifications

e Fluxes

EM lteration:

Seyfert_2

eeeeee

10 20 30
EM lterations

See also Yang et al. 2023


https://umlcaxs-playground.streamlit.app/
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X-ray Datasets in the Era of Artificial Intelligence



Neural networks are universal function approximators

v k

Summing
junction

Synaptic
weights

Activation
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Prince 2023, J. Speagle



Neural networks are universal function approximators
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Representation Learning in X-ray Datasets

Pretext task:

Input: events Pre-processing: Architecture: .
Image reconstruction

2D representation
Encoder Decoder
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* Trained with all CSC detections with S/N ratio larger than 5.
e Size of the latent space: 24

e Spectral/spatial resolution optimized over all examples, but
same for all examples

Dillmann et al., submitted



Representation Learning in

Event File Event File
Representation I:  Representation lI:
E —t Maps E — t — dt Cubes

Feature Extraction I:
Principal Component Analysis

Event Files

New Transient
Candidates

Event File

Representation
—

Associate clusters
with known

transients
—

Include k-nearest
neighbors of
known transients

DBSCAN Embedding Clusters

Dip
Cluster N

Flare
Cluster

Other
Clusters

Feature

Extraction
—

Clustering
—

IIIIIDDDDDE

Feature Extraction Il:
Autoencoder Neural Network

Dimensionality
Reduction

t-SNE Embedded Space

Di Stefano et al. 2021
2E 1402.4+5440 (ULX)
V* UY Vol (LMXB)

Quirola-Vasquez et al. 2022
Lin et al. 2022
Lin etal. 2019

Other Flares

Yang et al. 2019
Glennie et al. 2015
Jonker et al. 2013

XRT 200515

Known

Dips
Known b4
Flares

X

X

xX

» (Catalog of ~3000 dip and flare candidates in CSC

Dillmann et al., https://arxiv.org/abs/2412.01150




Examples of catalog objets

CATALOG_ID: 16527_79 (LMXB) CATALOG_ID: 2017_59 (LMXB) CATALOG_ID: 5197_13 (HMXB)

Running Average Lightcurve : Running Average Lightcuirve Running Average Lightcurve
600s Bins ¢ 600s Bins ¢+ 600s Bins

Dips

25 I5
Time [ks] Time [ks] Time [ks]

RS CVn Variable) CATALOG_ID: 4732_39 (HMXB)

—— Running Average Lightcurve —— Running Average Lightcurve Running Average Lightcurve
¢+  800s Bins ¢+  1500s Bins ¢+ 400s Bins

Flares

Time [ks] Time [ks]

CATALOG_ID: 12823_136 (X-ray Pulsator) CATALOG_ID: 6291_1104 (Magnetic Cataclysmic Variable) CATALOG_ID: 3877_49 (SGR)

Lightcurve —— Running Average Lightcurve —— Running Average Lightcurve
800s Bins ¢+ 500s Bins ¢+  300s Bins

Periodic

20 25
Time [ks] Time [ks] Time [ks]

Dillmann et al., submitted



X200515: A Fast X-ray Transient in the LMC

XRT 200515

SNR 0509-67.5
P

4 arcmin

Fast (~10s) rise of the flux, followed
by long tail with spectral softening
after the burst.

Peak luminosity: Lx ~ 2x1038 erg/s

Potential counterparts are consistent
with the old stellar population in this
region of the LMC.

Harder that other FXT reported, no
plateau.

XRT 200515
20.0s bin size

i {
herereeesnnnssnnnes tt *i H*H*.,,H,, '*0”0000*0.0.0...o..........o.N.H......’......."...

Dillmann et al., 2025MNRAS.537..931D

Too fast to be consistent with a stellar
flare.

No known flares in the Milky Way
halo, that resemble XRT 200515.

Observed time scale and hard
spectrum suggest connection to
magnetic fields or relativistic jets.

Oscillating tail. Type 1 burst in a NS7
GRB from more distant merger?



» We test the representation power of our self- Regriiig’“mzraget -
.eamed latent features by using thgm as the e
nput for regression and classification. hard_hs

* Performance in ¢ aSS|f|Cat|on.|s comparable T T Y, 0907
with multi-wavelength supervised approaches. source type 0.62

YSO vs AGN 0.75

 Nearest neighbor anomaly search:

12994 118 3498 2657

2
PCA component 1

tSNE component 1

Song et al., accepted to NeurlPS



Inferring physical parameters while accounting for instrumental eftects

J. Yang et al., in prep

A neural network can emulate
simulated pile-up in relativistic reflection spectra

— |Incident with Response
- MARX simulation with pile-up
- Neural Network Prediction

Incident spectrum with

instrumental response Trained ,
On ~22,000 - e

simulations of '
Chandra-specific Nguh';:(! el:elat:,'\e’?;k ref eXiOﬂ dee\S — Incident with Response

a - MARX simulation with pile-u
SlmUIator, MARX, @ ‘ 256 neurons each — Neural Network Predictpion i
including pile-up } RelLU activations

@ dropout(p=0.1)

average

pileup
threshold

Counts/s

average

pileup
threshold

n
=~
n
e
-
-
o
O

Training data Neural network

w”“’ﬂ prediction for Garcia & _ H. -, -
w"'/w/ | - ) "
" A Dauser’s relxill -

counts/s spectrum Energy [keV]

Minimizing a mOde‘ (201 4) Fig. 2: examples of the neural network

(MSE of normalized counts/s spectra) successfully predicting a piIed-up spectrum that is
adjusts the neural network consistent with a MARX simulation. Each incident

spectrum is generated from reIX|II and each |\
simulation assumes an exposure of 5e4 S.




Inferring physical parameters while accounting for instrumental eftects

(Garcia et al.

—— MARX simulation

°F GX 339-4

! Total Model

Counts/s

rol‘_"\
>
[
X~
‘v

(\'J
e
G
w
&
o
o
o
=
o
S

o
>
©
~

NuSTAR FPMA -e-=
NuSTAR FPMB -e-
Swift XRT =-e-

L

Distant
Reflection

Energy (keV)

 The Bayesian MCMC emulator has been incorporated
IN the fitting process for parameter inference.

 But, we don't want to learn the simulation prescription
of pile-up. We want to learn from the data.

nH

 Domain adaptation using spectral grating data.
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J. Yang et al., in prep



Overview

The Multimodal Universe is a massive multimodal dataset of astronomical observations (7 3
designed to enable large-scale machine learning research in scientific domains Data Access
Impact:
2 2 5 M + Bridges gap between ML research and scientific applications 7
« Enables development of multimodal approaches s 43
S p e Ct r.a + Standardizes data access for astronomy ML research Documentation
(. >y

Auxiliary Data Products:
+ Labels for classification, regression and image translation from auxiliary data
Format: 1D signals with varying resolution. « Millions of samples across multiple modalities, instruments, and surveys.
« Scientific metadata including instrument properties

Key Properties:

» Variable wavelength sampling

+ Detailed features

« Complex noise patterns

« Instrument-specific artifacts \, /.

ML Challenges:
. Variable-length sequences
. Handling missing/masked data
. Cross-matching with other modalities
. Emission line predictions
. Redshift estimation

'flux': Measured flux as a function of
wavelength
'ivar': Inverse variance of noise on the

The Multimodal Universe

response (Line Spread Function,
LSF)
'lambda’: Wavelength of each flux

Hosting and Infrastructure

« Open-source with clear contribution guidelines and support for non-developers
tion of surv Download scripts - . « Utilities for cross-matching (finding matching data across modalities)
« Community driven development with an active team of maintainers
5% b @‘\ ' « Huggingface '~ hosted data samples for development 1 4 0 M

\ Data curatio nlti-mo
5 i I'“ i ! « Globus endpoint for safe TB scale data download

[u oeEs datas
% . [%/) . E/ - Extendable - new data are already pending!
@ L% / « Expert selected science ready data I m a g eS

el 1

Format: Multi-channel arrays (3-7 channels)

Key Properties:
. High dynamic range spanning several orders of
magnitude
. Complex noise characteristics
. Instrument-specific distortions

ML Challenges:
. Handling measurement uncertainties
. Multi-channel processing

Dealing with varying PSF

5 .
h . Distribution shifts between instruments
. 1 ; . Finegrained classification
;’ = \ . Redshift estimation
[ 4 \
/ f ol 'flux': An array of flux measurements of

v the image

'ivar': An array of the inverse variance of
noise in the image

'band': A string indicating the wavelength
range of the image

'psf_fwhm': A value indicating the size of
the instrumental response (point
spread function, PSF)

Enabling Large-Scale Machine Learning }§ /| -

with 100TB of Astronomical i
o - Scientific Data

DESI spectra with gaussian smoothing applied . -
show characteristic structures with standard

deviation bounds See Appendix A 5 3 for dataset details
Data published in DESI Collaboration et al 2024 =

| '/J

i Lightcurves

" Wavelength (A) o PLASTICC Data
Figure 4 from Appendix A4.1

] Format: Irregular temporal sequences Usually measurements of
Data originally published in Kessler et al 2019

variable stars, includng supernovae

. Key Properties: ML Challenges:

- | “ 1";‘ bl |1 1 “he LA « Irregular sampling « Irregular time intervals
= U RN Ry AT T « Multiple wtavelengths « Missing observations
< o L g “— « Heterogeneous coverage « Multi-band alignment
g SN gy « Variable time scales « Real-time classification

Time (Days)

/ image's pixels on the sky

GZ10 Benchmark
Galaxy morphology classification task results - see the paper

- for more details This dataset was produced in Leung & Bovy 2018
\ based on
; Lintott et al 2008 The Galaxy Zoo

team maintains the original, expanded, and full fidelity records of
classifications

Pretraining Model Top-1 :\(~r'11r.‘u~_v
EfficientNetB0 80.9 0.1 7
W . \ No pretraining *ConvNext-nano rJ () —l 8 '/
. A & ResNet18 e
2 ¢ DenseNet121
o & Galazy Zoo *ConvNext-nano
7, ImageNet-12k *ConvNext-nano 83.9 £0.3 %

YY 12k
Spectral Cubes

*Trained in Walmsley et al 2024

Format: 3D datacubes providing detailed spectral information across MaNGA Data
spatial regions of galaxies tracing chemistry and kinematircs Described in Appendix A 6.1
Data originally published in Bundy et al 2015

Key Properties: ML Challenges:
+ Combines imaging and spectroscopy + High memory requirements wovaace ] - ot - -
» High-dimensional data structure » 3D data processing wIvengh spalial ocaon h < |
+ Rich physical information + Joint spatial-spectral learning ,‘ I i I .
+ Translation between modalities

Lo A

This figure is adapted from Cherinka et al. 2019

Getting Started

dset_sdss = load_dataset("MultimodalUniverse/sdss",
streaming=True,
split="train')

4000 5000 6000 7000 8000 9000

dset_1ls = load_dataset("MultimodalUniverse/legacysurvey",
streaming=True,
split="train')

des-g des-r des- des-z

from datasets import load_dataset_builder
from mmu.utils import cross_match_datasets

sdss = load_dataset_builder(
"data/MultimodalUniverse/v1l/sdss",
trust_remote_code=True
)

hsc = load_dataset_builder(
"data/MultimodalUniverse/v1/hsc",
trust_remote_code=True
)

dset = cross_match_datasets(
sdss, # Left dataset
hsc, # Right dataset
matching_radius=1.0, # Distance in arcsec
)

SDSS spectrum

tsc-g becor hec-i ve-z hec-y

: N
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Selt-supervised (representation) learning

—
Pretext
Task
-«

o Self-supervised learning is a type of
machine learning where the system
learns representations of data without the
need for explicit human-provided labels.

g
@
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Q
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* |nstead, labels are generated by the
system to solve a "pretext” task.

Finetune

* |f trained on lots of data, the

representations can be used for
downstream tasks in which they were not
trained (e.qg. Classification)

e
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| grew up in France, | speak tluent...French



ontrastive Learning Astro+Natural Language

The X-ray properties of the source include the

Te X‘t detection of nuclear emission classified as a Seyfert . . -
7 properties of the source include variability

2, with X-ray luminosity values tied to its absorbed

d eSCI| b N g flux. The source is considered a Compton-thick

X r ay candidate, with significant absorption indicated in
re dominant hard X'I‘aY POWCT‘IB-W | / in Compact groups' The examination Of interactions between galaxies within these compact

sources power law normalization, with reported nt. The source exhibits a temperature bility is utilized to explore the nature of groups. Variability in X-ray emission, including|

. .. i ization of the power law and
luminosities around \(L_X \approx 10A{41 . . . ... .. .. .. changes in the normalization of the p
\( I \ pp {4‘ } \: rom spectral ﬁttlng, with an intrinsic lucleus, dlStlngulShlng between intrinsic the contribution of thermal components, aids in

tral features. The spectral analysis of the ~ :eristics of this source play a crucial role
veals it has a hardness ratio consistent with he scientific hypotheses outlined in the

ation of a soft X-ray thermal component  ing the behavior of active galactic nuclei, The X-ray data from the source is utilized to explore

the evolutionary processes in HCGs, particularly the

the spectral fits. The analysis shows variations in the

\text{erg s}r{-1}\) based on the spectral modehng,  ty of approximately \(L_{X, vility and any possible contributions from examining how gas is transferred, heated, or

¥ stripped from galaxies, contributing to our

- 0.5-10\,\text{keV}} = 2 \times 10A{40}), \text{erg \g star-forming activity, thereby

enhancing the understanding of how such

Candidate
Physical

Text encoder description
(LLM)

* .\ Nearest
neighbor

X

New X-ray
Data source. What
encoder | is it? What are

(PPAD) / its physics? X-ray properties:

) . | Hardness ratio
. Shared embedding Variability
Event files

(X-ray space Zero-shot prediction
photons)

K

1 exp(Sc (X, y:)/7)

LinfonceXY) = —— 2:108 Adapted from Parker, Lanusse, et al. 2024
njo K ‘= Zf exp(Sc(Xi,Yj)/T)




Text embeddings contain physical information

- All

: AGN

: TTauri

: OrionV
: QSO

: YSO

: HMXB

: LMXB

: Seyfertl
: Seyfert2

™~
0
€ 0
pa—;
X
(e}
)

SH oA &
o () o
text emb?2

|
o0
o

-110 -100 -90 -8 -70 -60 -50 -40 -30 -20 -10 O 10

text_ embl text_ embl

Here are some LLM embeddings from a GPT-like model for text summaries extracted
from astronomical papers about different types of X-ray sources. You can see how
they encode both the class of the object, and also some information about the
ohysics.




Pre-alignment embeddings

18: hard_YSO © 18: soft_star
© 18- soft_YSO - - © 18: hard_star
© 18: hard_YSO - 0, it © 18: soft_star
© 18: soft YSO . 0@ © 18: hard_star
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Specitic regions of the embedding space of each morality corresponds to X-ray
sources of a given class and specific spectral properties. There is a correspondence
between the data embeddings and the text embeddings




An LLM summary of an anomalous source

Anomaly score histogram

0.975

0.980 0.985
Anomaly score

0.990

0.995

'"The source 1dentified with "[WSG84] 2" is mentioned in the text provided. I summarize the X-ray properties and
their implications: A) X-ray Properties\n\nl. **Variability™*: The source has transient behavior with significant
luminosity fluctuations. Specifically, periodicities have been highlighted. The periodic signals were found at
approximately 55 d, although the stability of this modulation was questioned, implying that the source does not
maintain consistent brightness levels over time.\n\n2. **Spectral Features**: - The source was fitted using models
that include power-law and thermal components. The photon index for the power-law fit was constrained to be
around I = 1.33 £ 0.15 1n the energy range of 0.5—-8 keV.\n - For the thermal model component, the temperatures
were estimated at around 0.6 keV, suggesting an emission predominantly from hot plasma.\n - The absorption
column density (N H) was determined to be around 3 x 10722 cm”—2, which suggests a significant amount of
interstellar material obscuring the X-ray emissions from the source.\n\n3. **Luminosity**: The source\'s observed
X-ray luminosity was reported to exceed 10739 erg s"—1 during various observations, indicating that the source
operates above the Eddington limit, which is characteristic of sources of type X.\n\n B) Scientific Hypotheses
Testing\n\nThe properties of the source are critical in evaluating hypotheses regarding the nature of ultraluminous
X-ray sources. The variability observed 1n the light curves across the different temporal analyses suggested that the
source operates under the "propeller regime" of accretion. This regime indicates the presence of a strong magnetic
field and can be key for understanding the behavior of neutron stars in binary systems.\n\nThe spectral features,
including the determined N_H and photon index, help to classify the source's emission mechanism. They also
provide insight into the environmental conditions surrounding the source, including the level of obscuration by
interstellar matter. The correlation of the measured luminosity and the spectral characteristics with other known
sources — particularly how they fit within the expected theoretical frameworks for ultraluminous X-ray sources —
serves to validate or challenge prevailing models. The emission patterns can assist in distinguishing whether the
source behaves more like an intermediate-mass black hole or if it i1s instead a neutron star system undergoing
unusual accretion dynamics. In summary, the X-ray properties of the source serve to reinforce the arguments made
regarding the diversity of ULXs and their potential to test existing astrophysical models related to black hole (or
neutron star) formation and evolution through observations of their variability and spectral characteristics.'




A tfew final remarks

X-ray astronomy was always the science of “a few photons”. We now have enough
photons to learn relevant patterns from them that inform physical models.

X-ray catalogs and archival research have enabled an era of data-driven discovery In

high energy astrophysics, in particular transient scie

nce and multi-messenger themes.

The moment is ripe for profiting from cutting-edge machine learning methods.

Self-supervised learning can result in meaningful representations of X-ray event data

that can be eftectively used for downstream tasks st

ch as classification, regression,

and anomaly detection, without having to rely on fea

As we move to the next generation of X-ray facilities,
growing, but the non-linear instrumental effects such

ures or labels created by humans.

data complexity will continue
as pileup will also be there. ML

emulation offers an opportunity to learn those etfects from data.
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X-ray view of optically selected dual AGNs

0.0 0.5 1.0
log[S)/Ha

CSC pushes the limit of
dual AGN studies to
- separations of <bkpc

Cross-matching of CSC sourc

es with

optical and IR catalogs allows for multi-

wavelength identification and
of dual AGNSs.

>80% of the targets identified

classification

N pairs

have confirmed AGN emission.

X-ray luminosity increases wit

N decreasing

palir separation, suggesting th

at mergers

contribute to more luminous AGNSs.

From X/mid-IR ratio vs. HR, evidence that

dual AGNs are more obscured that

ISolated ones, and less obscu
more evolved mergers.

red than

DeRosa et al. 2023
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Classification of CSC spectra using
Neural Nts (Hebbar et al. 2023)
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Network trained to classity stars and AGNSs, using the simulated spectra computed

CSC spectra.

e [rained model applied to both the simulated and observed CSC spectra, and achieve

dCCurac

ies over 90%

* See also Yang et al. 2022, Chen et al. 2023, Kumaran et al. 2023, Perez et al 2023
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Nearby Cataclysmic variables and Accreting WD

* STARS

* Accreting WDs are the more abundant interacting s
compact binaries. 14 newly identified using the

. X-rays from Boundary Layer
CSC+ Gaia

 Ultra-compact versions of WD in binaries are
probes of general relativity and are expected to
emit GWs in the LISA band.

W
~

* The study of their formation channels is relevant
for binary evolution and subseguent multi-
Messenger science.

W
w

W
N

e Joint X-ray and optical searches efficiently find
CVs. Chandra: magnetic and low accretion rate
CVs, which could be missed by purely optical 5 7 .
surveys. y i

Orbital Period (hr)
Galiullim et al. 2024, Rodriguez et al.
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https://www.youtube.com/watch?v=uAXWDZtON5M

Inferring physical parameters while accounting for instrumental eftects

J. Yang et al., in prep

YZ Reticuli - eROSITA Konig et al.2022, Nature

eROSITA data
Black body
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Fig. 1: simulations of how Chandra/ACIS-S would observe different . : :
source spectra with no pile-up vs. with a large amount of pile-up. Plle, up COI’I’GC’[IQI’] depends
Photons of low energies are observed as events at higher energy. on instrument simulation.
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When 2 or more photons strike a detector In deper?ds on the agtzal
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th.ey are interpreted as a single “piled-up” event cloud. Systematic error is Srosma g s
with aggregated properties 10%-20%/  AXIS and Athena era



Future facilities

Galactic Extragalactic
. . M-dwarfflares (L > 10" ergs™in 1 ks) Massive black holes (L > 10® erg s in 1 Ms)
» Compared with Chandra, AXIS will have 5 to 10 b H
times the effective area, and better PSF R T |caor cistes 5 > 10w s degin 100K
performance across the field. AXIS will have fast et —
response alert capabilities for TOOs and other AU Ly L IR e
traﬂS|eﬂtS, ||"]C‘Ud|ng BNS mergers atz ~> 1. Binarywhitedwarfs([x>103"ergg?,l‘/,fl410ks) Neutron-star mergers (L > 10° erg s in 10 ks)

Rubin
LISA LI1GO

* The ESA-led Athena mission will operate at - 10
energies between 0.2-1.2 keV, with a resolution 9. 9
similar to XMM-Newton, but with a wide field
imager, better collecting area, and high
resolution spectroscopy capabillities.

AXIS Team




A Family of X-ray Catalogs

 The Chandra Source Catalog v. 2.1 contains ~408k unigue

sources and over 1.3 million X-ray detections at

high resolution

and low background, together with a very rich set of data
products. Median flux 8.0 x 10-15> erg/cm/s. Spatial resolution

0.5".

 The XMM-Newton Source Catalog v. AXMM-DR13 contains

~657kK sources, half of which have spectra and

Median flux 2.2 x 10-14 erg/cm/s. Spatial resoluti

ight curves.
on ~5".

 The eROSITA eRASS catalog contains ~930k sources over a

large portion over the entire sky, light curves, ar

Median flux 4.3 x 10-14 erg/cm/s. Spatial resoluti

Watch for the future: Athena, AXIS, Lynx!

d spectra.
on ~10".

CHANDRA




Nearby Cataclysmic variables and Accreting WD

* STARS

* Accreting WDs are the more abundant interacting s
compact binaries. 14 newly identified using the

. X-rays from Boundary Layer
CSC+ Gaia

 Ultra-compact versions of WD in binaries are
probes of general relativity and are expected to
emit GWs in the LISA band.
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* The study of their formation channels is relevant
for binary evolution and subseguent multi-
Messenger science.
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e Joint X-ray and optical searches efficiently find
CVs. Chandra: magnetic and low accretion rate
CVs, which could be missed by purely optical 5 7 .
surveys. y i
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Accounting for every photon: a Poisson Process Autodecoder

Pretext task:
Poisson r(t) reconstruction

Latent
14368 489: flare 16527 79: dip 12823 136: periodic

r(t) r Y

D - ‘ ‘ | ‘,_'u‘ l,
loss

D Positional : . J|

Encoding Eventfile {t;};—, [ | J || LIl l |
t T et P A 4

Input: events Architecture: PPAD

Rate (total)
(0)]
o

o
o

N
N
o

Rate (soft)

energy [MeV]

0

o

y(t)

We train to maX|m|ze“ the likelihood of a set of events, .
given the Poisson rate r(t) Given the output neural field r and an eventfile {¢;}1,

Positional encoding helps for taster convergence

n—1

L<T€; {tez}?;l) s | dt s )\TV y Z ‘Te(tez) . Te(te,’zi—l)|
At training, both ResNet weights and latent vectors are , i=1

negative log likelihood smoothness penalty

optimized. At inference, ResNet is frozen.

Light curve can be reconstructed at any resolution, for

given energy bands.
Song et al., accepted to NeurlPS, arXiv:2502.01627



https://ui.adsabs.harvard.edu/link_gateway/2025arXiv250201627S/arxiv:2502.01627

