Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

— Aperture Photometry algorithm uses counts n,, n;, in source and background regions, psf fractions f;, f,, average exposure
map values E,, E,, and region areas A,, A, to compute posterior probability distribution for source photon flux.

P(Sa b ‘ Ng, Np, f87 fba E37 Eba AS7 Ab) = KP(S> PPOisson(”s ’ fsa E57As) P PPOisson(”b ’ fb7 Eba Ab)
P(s|...) = / P(s,b|...)db
0

/OOOP(3|...)ds ~

P(s) = constant (flat,or non — informative, prior)

0os T 7

o - 1

Fis)

ooz z

— Report mode and 68 % percentiles for each band, region, obsid in database

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

— Many sources observed more than once

ACIS
10000.0 T T T

1000.0 |

100.0 (-

Number of Stacks

10.0

0.1 L L L | L L L | L L 1 | I I I |
0 20 40 60 80
Stack Size (Obslds)

o
o

— Want to combine results from multiple obsids into a single “master source” flux, using the individual obsid results (or at least the
same formalism)

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux
— In Release 1, combined data from all the apertures
Ne=)>Y n,F,=> f,E; =) E,etc

— Worked OK, but had some disadvantages
— didn’t incorporate upper limits
— difficult to combine data on aperture areas
— for variable sources, didn’t match intuitive variance-weighted mean

Malsteler Sourcle 1 0863

e

_Ih’J

I
of

E

Q

| 0.0003 [=
: -

o | +

s I

e

©

o

ml 0.00025 7
5]
3

©

i

:l L

0.0002 E

Observation Number

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

— For Release 2, use different approach - use posterior P(s|...) from obsid 1 as prior P(s) for obsid 2
— Advantages
— Upper limits easily incorporated, as long as aperture photometry results are available for non-detections
— No approximations about 'average’ apertures needed
— Disadvantages
— Where to start in combining obsids? Need to decide how to order results from individual obsids.
— For variable sources, posterior pdf for one obsid may not be a good candidate for prior for another obsid.

01 [N

Posterior Probability P(s)

i I IS RS |
0 50 100 150

Source Intensity s (counts)

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

— Order individual obsid results by time. Choose this rather than flux to ensure results represent an actual physical state of the
source.

— Divide obsids into blocks, within which a constant source flux is consistent with photometry results from individual obsids.

— Use Bayesian Blocks algorithm of Scargle et al. 2013, “STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN
BLOCK REPRESENTATIONS”, (2013ApJ...764..167S).

NBlocks
P({B;}|0;) = P(Nuors) [l F(Bi|0; € B
=1
P<NBZOC]€S) ~ pyNBlocks

F(B;|0; € B)) = /ds[11 P(sj\...)]

0 JjlO;€B;

— Assumptions:
— In any given block, obsids are sequential in time, although they may be separated by arbitrary gaps
- NBlock’s < NObsids (0 <7< 1)
— Data from different energy bands sum in computing F

— Select {B;} that maximizes log[P({B;} | O;)]:

NBlocks
loglP({B:i}|0;)] = Naiokslogy+ > log[F(B;)]
i=1
NBlocks
= Z [log[F (B;)] — neprior]

i=1
neprior = |log(7)|

— Parameter ncprior determined from simulations.
— Details in routines get_blocks.py and get_Fitness.py.

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

— Example: Simulate same source in 10 obsids, with times randomly sampled from uniform distribution between 0 and 1.0, and
source counts randomly sampled from Poisson distribution with means given by the following profile:

| t | Counts |

0<t<0.333 10
0.333 <t < 0.667 100
0.667 <t <1.0 30

Number of Cells: 19

Background Density: 9.825000

Source Position: (57.548635,66.938363)

Cell Start Time Counts PDF Mode L lo CL hi Actual CL
1 @.495572 100.00 95.808 85.591 186.737 @.686
2 @.466260 100.00 101.537 91.151 112.9@3 @.686
3 B.883630 30,00 24.534 19.465 38.467 D.687
4 @.323591 10.00 5.487 3.027 8.865 @.698
5 @.953232 30.00 34.743 28.564 41.464 @.685
& @.699711 30.00 35.816 29.631 42.731 @.685
7 @.912493 30.00 32.604 26.765 39,255 @.685
g @.881968 30.00 34.619 28.564 41.464 @.685
9 @.180941 19.00 8.679 5.621 12.7@89 @.697
18 B.412823 180.00 96.814 86.51@ 188.137 B.694
9.180941 10

8.323591 10

9.412023 108

9.46626 108

B.495572 10

9.699711 38

@.881968 30

B.88363 39

9.912493 38

@.953232 30

Evaluating ncprior

ncprior: 4] change_points: @ 1 2 3 4 5 6 7 2 a
ncprior: 1 change_points: @ 1 2 3 4 5] 7 8 9
ncprior: 2 change_points: @ Z 5

ncprior: 3 change_points: @ 2 5

ncprior: 4 change_points: @ Z2 5

ncprior: 5 change_points: @ Z 5

ncprior: 3] change_points: @ 2 5

ncprior: 7 change_points: @ z2 5

ncprior: 8 change_points: @ Z 5

neprior: 9 change_points: @ 2 5

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

Draft Specification

— For each master source:
For each aperture type (source or ecf90):

1.

collect posterior probability distributions for all contributing obsids (from all contributing cohorts), together with aperture
data (counts, psf fractions, expmaps, etc.)
order pdfs by time of obsid
compute blocks and report time of first obsid in each block
Within each block:
i. For each band
A. re-order obsids by net source counts
B. use pdf for lowest net count obsid as prior probability distribution for next lowest obsid, and re-compute pdf
C. iterate until all obsids in block are used
Select one block as representative and report in DB
i. mode and percentiles of resultant pdfs from previous step as master source flux and confidence bounds (per band)
ii. some (TBD) number or numbers to describe block (total exposure, duration, etc.) (per block)
iii. obsids that contribute to representative block
output to fits file pdfs from step 1 d (intensity array and pdf array, per band, per block)

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

Impact on CSC Products

— Master source flux and 68% percentiles are already reported per band per aperture type - no additional burden

— At least 1 additional (double) column for block description for each aperture type

— Either 1 additional column containing variable-sized array of contributing obsids for each aperture type, or some other way of
describing the relation, similar to master source - per obsid source association

— Inter-observation light curves are already provided per band; no additional burden on number of files (unless each aperture
type is saved in separate file), but now each file will include intensity and pdf arrays per block; arrays are typically 50 doubles
each; also should include start time and total exposure of each block.

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

Outstanding Issues

— Determine ncprior
— Simulations running; preliminary results available for null case (no variability)

10 Count Sources, 1000 Simulations per Point

T T T T T T =

“4
~
«/’
e
2.00 e
-
P
-~
-
r/’
-~
1.90 L -~
4
} -
-
= -7
= j,/'
o :
21.80 L,%
3
,/‘
%
1.70 L _/{/
;/
-
,/—
-
e
1.60 _E
1 1 1 1 1 1
4.0 6.0 8.0 1e01 2.0 4.0

Number of Cells

— need to explore how ncprior depends on source counts, number of obsids, different variability profiles

— need to verify that multiple bands can be analyzed together (one block rules all the bands)

— need to define fall-back option in case step 1.d.i. in draft spec fails

— need to decide how to select “representative” block (longest exposure, longest duration, brightest, etc.) and what data are used
to describe them in the DB

— need to define actual structure of output data files (assumed 1 file per band, 1 row per block with variable-length arrays)

— need to decide whether both aperture types need to be included

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

get _Fitness.py

def get_Fitness(pdfs,nsteps=1008):

Determine cumulative fitness functions for a range of pdfs, input as a list with

pdfs[i][@] = start time of cell
pdfs[1][1] = array of intensity values s at which pdf is evaluated
pdfs[i]1[2] = array of pdf values for that cell

The pdf is normalized such that sum(pdf)*(s[1]-s[@]) =1

import numpy as np

mins=[]

maxes=[]

npdfs = len(pdfs)

F = np.zeros(npdfs)

First, find range of all the s arrays

for i in range(®@,len(pdfs)):
mins.append(pdfs[i][1][@]1)
maxes.append(pdfs[i][11[-1]1)

and use that to define new intensity grid s

s@ = np.min(mins)

sl = np.max(maxes)

ds = (s1-s@)/nsteps

sint = np.arange(sd,sl,ds)

Build fint, the integrand of F, which is the product of the regridded pdfs. Start with fint set to 1
and work backwards, so that F includes the last pdf only the first time through the leop, then the
lost two, etc. until it includes them all.

fint = np.ones(len{sint))

for i in range(@,npdfs):
j =npdfs - 1 -1
pint=np.exp(interpolate(pdfs[i]1[1],np.log(pdfs[31[2]),sint))
pint /= (sum{pint)*ds)
fint *= pint
F[3] = sum(fint) * ds

return np.logl@(F)

10

Grouping OBSIDs into Bayesian Blocks on the Basis of Flux

get_blocks.py

def get_blocks(pdf_list,ncprior):
Determine change-points for Bayesian Blocks
Input:
pdf_list: List of pdf data for each cell, [start time of cell, array of intensity bins, array of pdfs]
neprior: Penalty factor. logl® of prior probability of having N blocks. Input neprior is assumed »@
and is subtracted from the fitness function for each block.
Qutput:
change_points: list of start times of cells that begin new blocks in optimum partition

import numpy as np

Make sure pdf list is time-sorted

pdf_list.sort()

ncells = len(pdf_list)

The optimal partition for the starting case of the first cell enly has a best fitness function of
-neprior, since the marginalized likelihood is 1 for single normalized pdf. The lecation of the

first change-point is the beginning of the list, or index @

best = np.array(-ncprior)
last = np.array(@)

Now need to construct ACr)
for R in range(l,ncells): # Skip the first cell since we already know the results for it
F = get_Fitness(pdf_list[@:R+1])
A = np.append(@,best) + F - ncprior
best = np.append(best,A.max())
last = np.append(last,A.argmax())

Once all ncells have been considered, reconstruct change—points from 'last’ array:

change_points = []
cpindex = last[-1]

while cpindex > @ :
change_points.insert(d, cpindex)
cpindex = last[cpindex-1]

above gets everything except the first one

change_points.insert(@, last[@1)

return change_points

