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ABSTRACT

There are a number of military applications in which the geographic location of a
signal of interest is of prime importance to the ability of a unit to fulfill its mission. The
accuracy of the geographic fix provided to the warfighter can directly affect the success or
failure of a mission. One method to improve the accuracy of existing systems is to use the
weighted average of 2 number of intercepts. Each intercept is manifested as an error ellipse
comprised of a latitude, longitude, semi-axes, heading and a related Chi-squared distributed
probability. Individual error ellipses can be viewed as 2 quadratic surface perpendicular to
the x;y plane of a bivariate normal distribution, the z-axis intersection of which
corresponds to a Chi-squared value. By transforming the individual error ellipses to their
related location covariance matrices, Gaussian statistics may be used to produce a single
location ellipse that combines information from several two-dimensional target location
ellipses. By providing a means to fuse data from a given source the warfighter or analyst will

be able to more accurately assess a threat and respond.
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I. INTRODUCTION

A. JUSTIFICATION

There are 2 number of military applications in which the geographic location of a
signal of interest is of prime importance to a unit’s ability to fulfil its mission. The accuracy
of the geographic fix provided to the warfighter can directly affect the success or failure of a
mission. It is for this reason we must continually strive to improve our ability to generate

the most accurate and condensed geographic solution from all available data.

This thesis describes an algorithm to produce a single location ellipse that is the
combination of several two-dimensional target location ellipses. The combination algorithm
presented in this document is limited to a stationary single source for data set production.
The purpose of this study is to assist the Naval, Command, Control and Ocean Surveillance
Center Research, Development, Test and Evaluation Division’s (NRaD), Integrated Satellite
& Link Communications Division (Code 841) in the documentation of the combination

algorithm. This effort is in support of the Classic Crystal project developed by NRaD.

B. SCOPE ‘

The scope of this thesis involves the development of fhe combination algorithm. A
mathematically rigorous presentation of assumptions made in the algorithm and of the
supporting theory will be presented. If an appropriate method is available, verification of
developed mathematical equations is supplied. It is not within the scope of this project to
consider the effect of system dependent biases (e.g. atmospheric delays, refraction) on error

ellipses produced by different systems. For this reason the data for this project is limited to

_error ellipses produced by a single source.




C. CHAPTER OUTLINE

Chapter II presents the underlying statistical theory upon which the Combination
Algorithm is based. The chapter culminates with the formula for the optimal estimate of
the target location as presented by J.A. Roecker, who based his work on that of Nelson
Blachman. The concepts of a bivariate normal distribution and application of Bayes’
Theorem are covered as they directly support the formulation of the optimal estimate.
Chapter ITI concerns itself with a number of topics all related to applying the optimal
estimate of the target location developed in Chapter II to a real world scenario.
Development of the covariance matrices, the effects of adding an observation to an existing
solution, ellipse rotation and heading issues are covered in rigorous detail. In Chapter IV
the theory and concepts of the previous two chapters are put to use in the presentation of
the Combination Algorithm. The process is detailed in a step by step manner that can
easily be applied to a number of platforms. Finally, Chapter V offers conclustons and

recommendations for further study.



II. STATISTICAL THEORY

A. RELATIONSHIP OF THE ERROR ELLIPSE TO A BIVARIATE
NORMAL DISTRIBUTION

Each of the target location error ellipses to be combined to produce a single error
ellipse will be defined by the following parameters: center position, heading and magnitude
of semi-axes and probability level. These ellipses represent an area that has the specified

probability that the target lie within it’s bounds. We will begin by defining a joint normal

Ca ) X
distribution of two variables x = (x j as
2

px)=k* exp{— —;—(x - u)TB(x - u)} 2.1

where k is determined by the normalization of the total probability to one, p and X are 2-

component column vectors and B a (2x2)-matrix. The vector p = (:) gives the location

of the center of symmetry of the distribution

]2 T(x - u)¢(xﬁx1d"z =0 | (2.2)

—00—00

The expected or mean value of a random vector X 1

E(x) = f ]gx¢(x)dxldx2 =[:) 2.3)

—00 —00

The covariance matrix of the distribution is defined as

€(x)=E(x-p)x- u)T = [E(x,. - ,u,)(xj - ,uj)] (2.4)



(Anderson,1984). The i th diagonal element of this matrix, E(x,. - ,u,.)2 , is the variance of
x, and the 7, j th off-diagonal element, E(x,. - U )(xj - ,uj) , 1s the covariance of x;and X;,

i#j. Note that since E(x,. - ,Lg)(xj —,uj) =E(xj - ,uj)(x,. - ,u§) the covariance matrix is

symmetric. With this said the covariance matrix can be written as

(x, - ,ul)2 (x, - M)(xz - "’2)} (2.5)

e=5"- E{(xz - :“z)(xl ‘M) (xz _:“2)2

2 2
_|G1 On|_|9% On 5
= 2 | = 2 (2.6)
On O Op O
where we have used the symmetry of the covariance matrix (ie. 0y, =0y ). By matrix

inversion we obtain

1 ( 0-22 - 0'12)
B=—"-—"" . (2.7)

2 2
2 2 -
0,0, — (0'12) O O

To facilitate the next step in our development of the ellipse of covariance we will introduce

two reduced vartables

i=12 2.8)

with the property Var(ul) = var(uz) =1, and the correlation coefficient

Ty
= = ) 2.9
pe 2 Lol =
Equation 2.1 now takes the reduced form
1 1
¢(ul,u2)= k *exp —H Bu (2.10)



with

1 (1 —p)
B= . 211

Lines of constant probability density are determined by requiring the exponent in Equation

2.10 to be constant, as shown in the following equation:

1
I (u,2 +ul - 2u1u2p) =c 2.12)

If we choose the constant, ¢=1, then in terms of the original variables, Equation 2.12

becomes

(xl_;ul)z _2px,—,u,x2—,uz+(x2 _2#2)2 =1-p° (213)
o, (o g, . 0,

(Brandt, 1983). This can also be written as a sum of squares of two stochastically

independent variables
2 277 - N2 SN2 .
1 X, — - - X, —
a)  xemmem lemm) | () ()
1-p o, o o, o, o, 0,

which are distributed as ¥* with two degrees of freedom. This is the equation of an ellipse
with the center located at 4, f2 The semi-axes of the ellipse have an angle 6 with respect
to the x,, x, axes. This angle, and the magnitude of the semi-major axis a and the semi-

minor axis bcan be derived from Equation 2.13 using the properties of conic sections:

2p00,0
tan26 = 227 (2.15)
o, — 0,
2 otai(1-p) (2.16)

"~ o2 cos’ §-2p0,sinfcosf + o7 sin’ 6




. i)
oy sin’* @ -2p,0, sinfcosf + o} cos” &

2.17)

The ellipse we have just described is known as the ellipse of covariance of the
bivariate normal distribution or, in the context of this thesis, the error ellipse. The ellipse
will always fall within the rectangle defined by points (¢, y2) and the standard deviations
(6, 0,). It can been seen from Figure 2.1 that the ellipse will touch the rectangle at four
points and in the extreme case of p = 1 the ellipse will degenerate into a straight line along
one of the diagonals of the rectangle. To help visualize the concept, the bivariate normal
distribution density function can be thought of as a sutface above the plane. The contours

of equal density are contours of equal altitude (equal probability) on a topogtaphical map;
they indicate the shape of the hill (or probability surface)(Anderson, 1984).

Figure 2.1 COVARIANCE ELLIPSES

The form that the ellipse of covariance was presented in Equation 2.14 did well to
illustrate the properties of an error ellipse. In order to implement the combination
algorithm we must be able to derive the covariance matrix from the initial parameters. This

is most easily accomplished by rewriting Equation 2.14 in matrix form as

7 =(x-%)" €' (x-x) (2.18)




where x is 2 Gaussian random vector, X is the true mean of the vector X and € is the
covariance matrix of x (Roecker, 91). The chi-squared value x* with 2 degrees of freedom
corresponds to the probability that the observation falls within the ellipse described by this
equation. - In Equations 2.15 thru 2.17 the angle between the ellipse axes and Xy, X, axes,
and the semi-axes were derived from Equation 2.14. The same information can be
extracted from Equation 2.18 with the help of the eigenvalues and eigenvectors of @

(Roecker, 1991). The eigenvalues are found from
I€-¢1=0 (2.19)

where I is the identity matrix. Substituting for € from Equation 2.6 and taking the

determinant yields
2 ( 2 2) 22 2 _
e*-¢loy +0,)+0,0, -0, =0. (2.20)

Therefore, the eigenvalues are

s ol +o, \/ (Gf + 0222 )2 - 4(012022 - "122) (2.21)

and the semi-axes are the square roots of the eigenvalues multiplied by the two-degree of

freedom %2 -value corresponding to the specified probability p

a=4xe (2.22)

b=4\1c (2.23)

Values of X vs. p are given in Table 2.1




Table 2.1 Values of Chi-square vs. Probability

X p
2.30 0.683
4.61 0.90
6.17 0.954
9.21 0.99
119 0.9923
18.4 0.9999

B. BAYES’ THEORM

This project is intended to combine target error ellipses (discussed in the previous
section) generated by several independent observations, each of which can be considered
Gaussian. The result of which will be an error ellipse that represents the smallest area
containing the target location with the specified probability p. The nucleus of the
Combination Algorithm is based on the work of Nelson M. Blachman of GTE
Government Systems Corporation. Since Blachman’s application of Bayes’ Theorem is
fundamental to the solution, excerpts of his manuscript (Blachman, 1989) are presented.

below:

We suppose that, on the basis of 1 independent sets of observations O,,0, ..., O, of

the same target, a location ellipse has been found. Each such ellipse is a contour of the

Gaussian conditional probability density function (pdf) p(x, by Oi) of the target

location based on one set Oi of observations. Each of the 1 given ellipses is based on

the Bayesian relationship



(x.»)p(0]x.y)

» (OA ) (2.24)

1

p(x,y Oi) =

expressing the probability density function ( pdf) of the target (x, y) conditioned on (he

observations O, as the ratio of the product of the prior (i.e. before 0,) pdf of

(x,y) times the pdf of Oi conditioned on the location (x,y) (this product being the
Jjoint pdf of (x,y) and O,) to a normalizing constant, which is the unconditioned pdf
of O, and is the integral of the foregoing product over all x andy. Because different
observers may utilize different prior pdfs, p; (x, y) can depend on i. As long as

D; (x, y) is constant over the entire area where p(O,.

x,y) # 0, it cancels out here -

because p(O,.) is proportional to it, and so its value is not important.

For each 1 the pdf of 01. conditioned on target location (x,y) is therefore

)= A0)plx50)

O.lx,y) = (229
A0y p.(x.y)

On account of the statistical independence of the different sets of observations for a

given target location, the product of p(O,.

x,y) over all i is the conditional pdf

2(0,,0,,...,0,

(x.7).

x,y) of the entire set of observations for a given target location
Multiplying it by the prior pdf p(x, y), we get the joint pdf
p(Ol,Oz,...,OI,x,y) of the observations and the target location. Dividing by
p(Ol,Oz,...,OI), which is the integral of the latter over all X and 'y, we get, by

Bayes’ theorem, the pdf of (x,y) conditioned on all observations,



plvy) I’—[ p(0,)p(x.40)

0,..,0 )=
1 1) p(Ol,...,OI) i=1 Pi(x’y)

P(x Y (2.26)
The factors p(Oi) and p(Ol ,yO) ) which depend only on the
observations, serve merely to normalize this posterior pdf; they do not effect its shape.

As long as the prior pdf p(x,y) is constant over the whole area where the target may

lie, it cancels out as before, and it too does not affect the shape of p(x, YOy s 0, )

which is thus determined as Equation 2.26 indicates, by the product of the pdfs

O, ) based on the individual sets of observations.

plx.y

Blachman has set the theoretical foundation from which a practical combination
algorithm can be developed. In order to apply Equation 2.26 to a spherical earth we must
have the ability to manipulate the observations by a constant scaling factor. Roecker while

expanding on Blachman’s work (Roecker, 1991) noted that,

as long as the prior pdfs p(X ) and p,.(X ) are constant over the areas of interest,
they will cancel out with p(Ol,...,OI) and p(O,.) to affect p()dOl,...,OI) only
as a scaling factor. This leaves the conditional pdf p(z\"O,,...,O,) completely

dependent on the product of p(X‘O,. ) for its shape, and can be expressed as

p(x0,.....0,) = K]i[ p(xl0,) @.27)

i

10



where K is the scaling factor and X is a vector containing the target location. This

observation will later allow the observation covariance matrices to be scaled, compensating

for a spherical earth.

C. METHODOLOGY

In order to apply Equation 2.27 a method of extracting an optimal estimate of the

target location must be developed. Since p(x o,.) is Gaussian, the conditional pdf of the

target location can be written as

p(x|ol,...,oM) =K ﬁexp{— %(x —o, )T ci—l(x -0, )} (2.28)

p(xlol,...,oM) =K exp{— —;—i(x - o,.)T ci-l(x -0, )} (2.29)

where K is the scaling factor, X the vector containing the target location, o, the / th

observation of x and @ the covariance matrix of x (Roecker, 1991). The optimal estimate
for any symmetric cost function is the same for Gaussian distributions (Van Trees, 1968)
and results by minimizing the pdf detailed in Equation 2.29.. The minimum of Equation

2.29 is found by setting the first derivative to zero as presented below

—= M —— 2.30
ox 1€ 2 Ox (2:30)
where E,, is defined as
M T
E,=Y(x-9,) €'(x-o0,) 2.31)
i=1
and where

11




JE,

oE, | 7%
M=) (2.32)
ox PE,,
ox

n

Note that M is the number of observations and n is the number of components of the

vectors X and 0 (n=2 for this problem). To begin with we will examine the first observation

0,

E =(x- 0,) €'(x~0,) (2.33)

By, BlnTxl —0p
= [xl 0y X, _oln] : : (2.34)

Bnl Bnn_an—oln

n n 1—""1 —On
= {Z By(x - 0y) - Z B, (x - o) i (2.35)

- . _L_xn - Oln

=3 (x, ~ 0, )58, (5 -0,) e

Jj=1 i=1

then by the product rule we have

ﬁE n n
- = ZBik(xi "011')"' (xj —Olj)BIci (2.37)

ox, o j=1

since all summing is to 7 we can make a change of indices for readability

aEl n Bilc (xi - Oli) + i Bla‘ (xi - 011') (2'38)

ox, o i=1

Because the covariance matrix is symmetric we have

12




ad = i B, (xi - 011‘) + i B,; (x,- - 01,') (2.39)
axk i=1 i=1
= 22 B,(x - o,) (2.40)

In matrix notation this becomes

% =2€;'(x~o,) (2.41)

Setting the derivative%- to zero we have
2€(x~0,)=0 (242)
€C'x-Clo =0 (2.43)

X =0, (2.44)

So the initial estimate for x is the first observation o,, which was to be expected
Now that the process for a single observation has been established, we can generalize to

multiple observations. To begin with we expand the reduction variable E to include M

observations

(Z (x, - 0,,)2 4,(x, - 0., )J (2.45)

~3 (x-0,) € (x0,) (246

and once again set the derivative to zero

13



aﬁEf = 2% C(x-o0,)=0 2.47)

m=1

f[c;} (2-0,)]=0 (2.48)
i C!lz- f(c;}om) =0 (2.49)
C's- fl}(c;;om) =0 (2.50)

Which, with a little algebraic manipulation yields

1

M M -
=€) (Co,) where €=|> C; (2.51)
m=1 m=1

As depicted in Figure 2.2, X is the vector representing the location of the weighted
average of M number of 0 observations and @ is the resultant covariance matrix. This is

the optimal estimate of the target location we desire and the premise upon which the

Combination Algorithm is based.

Figure 2.2 OPTIMAL ESTIMATE OF TARGET LOCATION

14




III. CONCEPT DEVELOPMENT

A. COVARIANCE MATRICES

L Scaled Covariance Matrix

Chapter I laid the theoretical groundwork for the Combination Algorithm. We
have seen that the target error ellipses we are attempting to combine can be modeled by an
ellipse of covariance. The covariance matrix being the structure defining the target error
ellipse. In the real world problem, the error ellipse will have been generated upon the
spherical earth. In order to reduce the overall problem to a two dimensional one, each
ellipse will be projected into a plane. Therefore, the covariance matrices will need to be
modified, compensating for this projection from the spherical earth to the plane. This
modification is to compensate for the inequality between latitude error and longitude error
as the latitude increases from zero. The geometry of the projection from a spheﬁcal earth

to a tangent plane is depicted in Figure 3.1. We need to find the distance @, (ength of
projected ellipse axes) when given the arc-length along the surface of the sphere @, (an

ellipse axes), where r, = radius of earth and

asphere = re9 ‘ . ' (3‘1) '
asphere
=—. 3.2
0=—" 62
Observing the geometry
a ane
tan@ = —= (3.3)
re
A pine =T, tan & (3.4)

which leads to the transformation
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aS ere
A pore =T, tan(—‘;h—] (3.5)

Figure 3.1 PROJECTION GEOMETRY

The congruence transformation
€=5"Cs (3.6)

produces the scaled covariance matrix € that has maintained the symmetry of the original
covariance matrix.. The scaling matrix S is obtained by observing from Figure 3.2 below .
that the arc-length measured along the surface of the earth at constant latitude ¢
corresponding to a change in longitude A4 is given by 7, cos(¢)A/1 ; and the arc-length

measured along the surface of the earth at constant longitude A4 corresponding to a change

in latitude A@ is given by ,A¢. To put latitude and longitude on equal footing (in terms

of arc-length) changes in latitude are multiplied by 7, and changes in longitude are

multiplied by 7, cos(¢) . Therefore,

r, 0
S = ( ) (3.7)

0 r,cos¢
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Figure 3.2 GEOMETRY OF SCALING MATRIX

Expanding Equation 3.6 we find that
~ (r 0 o, O, \(r
S g
0 r,cosg/\0;5 0,,/\0
reo-w reo'¢/1 (re
~\r.oy,cosp 7,0, cosg)\ 0

_ rlc rlo,, cosd
rlc,,cosg rlo,, cos’ g

-
r, cosg.

-
r, cosg,

(3.8)

(3.9)

(3.10)

This is the scaled covariance matrix, where ¢ = latitude, A = longitude and , is the radius of

the earth. In the section to follow it will be necessary to solve for the eigenvectors of this

matrix. To aid in that process, the following notation will be used to refer to the scaled

covariance matrix in Equation 3.10.

(3.11)




where use has been made of the fact that oy, =0,

2. 2x2 to 3x3 Covariance Matrix Conversion

The objective is to convert the 2x2 covariance matrix given in terms of latitude and

longitude (Equation 3.11) to a 3x3 covariance matrix in terms of (x,y,2). The transformation

is as follows

_ T
() = T Cipin T
where the 3x3 covariance matrices are
Oy O, O,
(30 =| T O Ox
Oy O-yz P
O Ou O
C(M’h) =| 0y Ou O
Ohp Om Om

and the 3x3 transformation matrix T is given by

(ox ox ox)

op OA Oh

o_|oy oy o

|86 A Oh

oz 0z oz

\d JA Oh

where for a spherical earth

x=(re +h)cos¢ cosA

y=(re+h)cos¢ sin A
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)



=(r, +h)sing

re being the radius of the earth and the partial dertvatives are

Z:¢ —(r, + h) sin(¢ )cos(4 )
ox _ = —(r, +h) cos(¢ )sin(4)
oA

ox
T cos(¢ )005(/1 )

% = —(r, +h) sin(¢ )sin(A)

% = (r, +h) cos(¢ )cOS(/1 )

oy
—0,,; = | cos(¢ )sin(4 )

¢ =(r, +h) cos(¢)

2z _
Yy

Jz
T =sin(g) ,

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
(524
(3.25)
(3.26)

(3.27)

To define 11 (4.1 We start by finding the unscaled covariance matrix l}( +.4)» from

Equation 3.6

(3.28)



where

— 0
g |
S = . (3.29)
r, cos¢

and the scaled covariance matrix @ is given in Equation 3.11. Using the unscaled

covariance matrix in terms of latitude and longitude c( o

) and assuming the height / to be

zero with zero uncertainty, we can form the matrix

Oy Oy O
c( oir) =| %0 Ou 0 (3.30)
0 0 0
3. Selection of Eigenvalues and Eigenvectors

The key factors in the transformation of an observation seen in terms of semi-axes
a, b and heading 0, to it’s description by a covariance matrix, are it’s eigenvalues and
eigenvectors. This section will accomplish four tasks: derive the eigenvalues from the
characteristic polynomial of Equation 3.11, derive various identities from the characteristic
polynomial that will be useful in later sections, normalize and solve for the eigenvectors, and

determine which of the solutions will be numerically stable.

a. Eigenvalues

In order to produce the eigenvalues, which will be denoted by & the

nonlinear equation
(€-eDx=0 (3.31)

needs to be solved. To begin the process the scaled covariance matrix € is shifted by él,

where I signifies the identity matrix
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~ a-& ¥
c-glz( ,B—g) (3.32)

By definition (Strang, 1988) the number & is an eigenvalue of € if and only if

det(i] -& I) ~ 0. This determinant leads to the characteristic polynomial. It's roots, i.e. where

the determinant is zero, are the eigenvalues.
det(i} - I) =(a-e)B-¢)-7 (3.33)

=g’ —(a+pB)et+ap-y* =0 (3.34)

The real solutions of the characteristic polynomial (the eigenvalues) are found by the

quadratic formula as show below.

~ (a+ﬂ)i\ﬂx+ﬂ)2 —4af +4y*

e, ; (3.39)
=(a+[3)_+.\/a'2+2a§+l32—4§l3+472 (330
) (a+pB)£ya’ —22aﬁ +p+4y° (537
_ (a+l3)“—“\/€ -B)° +4y? (3.38)
b, Identities

With the characteristic polynomial at hand, this is a good time to observe
two identities that will become useful in future sections. Both of the following identities are

obtained from factorization of the general quadratic equation, which is
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(a‘ - &, )(8 - a_) =0 (3.39)
g - (a; +& )s +g,6 =0. (3.40)

Comparing Equation 3.40 with the characteristic polynomial Equation 3.34 we find two

identities that will later aid in establishing relationships between the scaled covariance matrix

Equation 3.11 and the primary data parameters 4, b, and 0,
g, +e =a+p (3.41)
g.e =af-y’ (3.42)

Also worth noting, but of less significant impact, are the identities

g —€ = \[(a —ﬂ)2 +4y?, (3.43)
&) _,=a and g| =8 (3.44)
c. Eigenvectors

This section will present solutions for the eigenvectors X; where
Xy " . , . ..
x =1, ,i =+ . Writing Equation 3.31 in terms of Equation 3.32 and the notation just
2i

mentioned yields

(ar— g ,6‘i J(:j B @ ‘ (3.45)

Equation 3.45 represents a system of two equations with two unknowns. By adding the

formula

x2+x) =1 (3.46)

22



to the system of equations, we can simultaneously normalizing the eigenvector to unit
length and supply an additional formula that will be used to produce four valid normalized
solutions. Each pair of equations will generate solutions for the positive and negative roots
of Equation 3.38. Fach solution will be checked for computational stability. The most
stable vector from each root will eventually be used to populate the eigenvector matrix.

(1)

(1) Solution for x{". The first solution presented is for x37,

which corresponds to the solution of the first equation in Equation 3.45. When €= ¢,

(a -g, )x, +yx, =0 (3.47)

X, (3.48)

The second equation needed to solve this system is supplied by normalizing the

eigenvectors to unit length using Equation 3.46. By substitution we have

72 2
—— +1x; =1 (3.49)
e

Solving for x, we get

2 (a —é& )2
(@-c) +7
a-g,
X, = ( ) (3.51)
LI
(a - a+) +y
Substituting Equation 3.51 back into Equation 3.46 yields
x, = 7 (352)
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Therefore,

e (a- &1()2 +y’ (a__}/g"j o

Check:
bl
D e
) (- ;)2 +7° (”— y'gﬂg) 0

Now Equation 3.41 states
& -f=a-g,,
therefore,
CxV = ¢ x®
Cx!V =¢g,x]

and Equation 3.31 holds true.

. 0
In checking for numerical stability note that when ¥—0 we obtain 5 for the components

of xg,l) , therefore xg_l) is not numerically stable as y—0.

24



(2) Solution for x?. The second solution evaluated is xS?) ,

which cotresponds to the solution of the second equation in Equation3.45 when & = &,

Yx, + (,B— g, )x2 =0 (3.58)

X, == X, (3.59)

The second equation needed to solve this system, as in the previous solution, is supplied by

normalizing the eigenvectors to unit length using Equation 3.46. By substitution we see

{(—’B;f——)— + 1}; =1 (3.60)

/4

solving for x, we get

2 _ /4
X, -———_(,B ~ 8+)2 +72 (3.61)
x, = 4 o | (3.62)
(ﬂ - 8+)2 + }’2

Substituting Equation 3.62 back into Equation 3.46 yields

¥, = _f (3.63)
(ﬁ_ €+) +72
Therefore
g —
x® = L - ( P j (3.64)
(B-e) +r*~ 7
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Check:

PR L (S,
N (ﬂ_g+)2+7,2 y B\ 7y

(ﬂ_g+)2 +}/2 Ve, —ﬂy +ﬁ},
1 (aa - &j.‘_)
(- )+~ 7%
g, (a— sﬂ)
( —£+)2 +y? 4
Using the Equation 3.41
a-¢ =¢ -
yields

and Equation 3.31 holds true.

In checking for numerical stability we note that when y—0

"

o-B 0

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

Hence, x{* is a numerically stable solution. Therefore we will use Equation 3.64 for the

solution from the eigenvalue &, . The next step is to determine which of the two equations

from the eigenvalue ¢_. will be used.
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(3) Solution for xV. The next solution presented is for xd ,

which corresponds to the solution of the first equation of Equation 3.45 with &= €.

(a - )x1 +yx, =0 (3.70)

X, (3.71)

The second equation needed to solve this system of equations is supplied by normalizing

the eigenvectors to unit length using Equation 3.46. By substitution we see

v 2
Tl =1 : (3.72)
La—f) }

Solving for x, we get

Xt= (3.73)
’ (a - )2 +y°
(a-2)
X, = > (3.74)
2
(a —-£) +7y
Substituting Equation 3.74 back into Equation 3.46 yields
x, = 4 (3.75)
2 2
(a - 8_) +y
Therefore,
1 —
x0 = - ( 4 j (3.76)
(a—s_) 2 NETE
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Check:

s e U A
Foor ) o
o :)2 +7” (8": y—eﬂg) o
T o

Now Equation 3.41 states

g -P=a-¢.
Therefore,

&O = ox®
showing that Equation 3.31 holds true.

In checking for numerical stability we note that when y—0

x> E‘l——s(a : B) ) @ 8

producing a stable solution.
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(4) Solution for x?. The last solution presented is for x? ,

which corresponds to the solution of the second equation in Equation 3.45 when & = &_

yx, + (ﬂ - )x2 =0 (3.82)

X, (3.83)

The second equation needed to solve this system, as in the previous solutions, is supplied by

normalizing the eigenvectors to unit length using Equation 3.46. By substitution we see

{(i}_—f:)—+l}x§ =1 (3.84)

/4

Solving for x, we get

2 4 '

;= ; 85
X, (ﬂ—a_) +}/2 (3.85)
x, = L . (386)

(B-¢) +7”

Substituting Equation 3.86 back into Equation 3.46 yields

£ -p

x, = - (3.87)
VB-e) +7’

Therefore,

x® = 1 (8‘ -F ) (3.88)
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Check:

@ = ! (a 4 )(5 - j (3.89)

(ﬂ— g_)z +},2 r B 4
_ 1 as. —a,B+y2J

(,B— e_)2 +y? (73_ =Py +Br 50
B 1 (ag_ —e+s_) -
= (,8—8_)2 o ve. (3.91)
= = (a—ﬂ 3.92
= (ﬂ—a_)2+}/2 y | (3.92)

Using Equation 3.41

in Equation 3.92 gives
€ = 2x®

showing that Equation 3.31 holds true.

- .0
Checking for numerical stability we note that when y—0 we obtain o for the components

of ) therefore, x(2) is not numerically stable as ¥—0.

The eigenvalues_ like the eigenvalueé,, produced one computationally stable
eigenvector. Note that £_ > 0 and g, >0 so both values are positive. The equations to be

used in solving for the eigenvector matrix G will be: Equation 3.64 which corresponded to
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the solution of the second equation in Equation3.45 when & = &, , and Equation 3.76 which

corresponds to the solution of the first equation of Equation 3.45with £ =¢_.

d Eigenvector Matrix

This section will develop the solution for eigenvector matrix G and verify it

by producing the diagonalized eigenvalue matrix A. The eigenvector matrix G is the matrix

whose columns are the eigenvectors xf) and xP (Recall these are the computationally
stable eigenvector solutions found in sub-section c. of this chapter). In order to simplify
the construction of G, some algebraic manipulation of the vectors is required. Consider

Equation 3.64. Since &, — ff = a — &_ (Identity Equation 3.41) we have

e A ) i

Now consider Equation 3.76. Again, since & —&_ = &, — 8 we can say that

(1) 1

V= Ja-c)e B ( a—]gj , (3.94)

X

By combining Equation 3.93 and Equation 3.94 the eigenvector matrix G is

1 & _'8' —y
- 02
Ja-e)e-p+r2\ 7 @ (3.95)

The determinant (difference of the products of the numbers in the two diagonals) of G is

det(G) = 1 ={(z. - Ba-2)+r*}, (3.96)

‘Ka—-s_)(a; —ﬁ)+7

which is equal to one, and the inverse of G is
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= 1 (a—g‘ 7) (3.97
e gt BTE |

The diagonalized eigenvalue matrix A(the diagonal matrix with the eigenvalues &_and &, as

the diagonal components) is

-1g 1 e-p - )(a }’j(a—g_ ¥ )
G GG”(a_g_)(g+_ﬂ)+},z( y a-el-y P\ -y &-B (3.98)
(a £ )(é’ - )+y ( [}/g —By+py -y +af-Pe (3.99)

! ( J(ag*_“ S ) 3.100
(a s)(a - )+7 Ve, &6 - pe. (3100

- (a_g_)(; o ( ( ‘;g+ £ ) ‘SYE“ /3)) (3.101)

_ 1 3+(a-a_)2+ ’e, - g_(a )+ g( /3) 02
—(a—g—)('9+_'3)“’2(‘7’3+(a‘3-)+73+7(€+—ﬂ) }’}’28_+s_(8i’— ) J( )

and by using @ — &_ = &, — B (Identity Equation 3.41) this becomes

e
=0 & (3103)

With this check it is reasonable to assume that Equation 3.95 is in fact the eigenvector

matrix.

4. Variable Relationships
In the preceding text there have been two sets of relationships established. In

Selection of Eigenvalues and Eigenvectors (Chapter I11.A.2) a relationship between the
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elements o, P and y of the scaled covariance matrix Qand the eigenvaluesg, , & was

established. A second relationship between the eigenvalues and the data parameters 2, b, 6

and x> was detailed in Error Ellipse Relationship to the Bivariate Normal Distribution

(Chapter I1.A). The following section uses these relationships to develop € in terms of 3,

b, 0 and 1>

The eigenvector from the positive root contains information relative to the
direction of the semi major axis of the ellipse. Of the two positive root solutions, it was
determined that the second was the more numerically stable. Therefore, the x, y

(2)

components of the eigenvector X}’ can be used to determine 0 as illustrated in Figure 3.3.

2 Xo+
/ )

Figure 3.3 ELLIPSE ORIENTATION

From Equation 3.64 comes the following

x(z)
B (3.104)

- Xﬁ) €, _ﬂ

tan @

The semi-axes for the ellipse corresponding to a probability level p are related to the

eigenvalues &, and £ . By Equations 2.22 and 2.23 we see that
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> a
a=+\xye = §& =;z— (3.105)
and
b2
b=yy'e. = &=T73 (3.106)
where 3’ is the two-degree of freedom value of cotresponding to probability level p.

Manipulating Equation 3.104 we find

g, —B=ycotd (3.107)
which leads to the formula
B=¢ -V cot¢9‘. (5.108)
From the Identity Equation 3.41 it follows that
a=¢ +& - P (3.109)
=g, +& —& +ycotd (3.‘110)"
=g +ycotf. (3.111)
Substituting Equation 3.108 and Equation 3.111 into the Identity Equation 3.42 we find the
second order polynomial
£.6 = (s_ +y cot 6’)(5+ —ycot 9) —y? (3.112)
=g, g —yE cot@+ye, cotf—-y2cot’ -7? (3.113)

This can be rewritten as
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—y*(cot? 0+1) + (e, cotd—&_cot 6)=0 (3.114)

or
7 (cot? 8+1)+7(s cot8- ¢, cot6) =0. (3.115)
r{y[eot’ 9+1]+[e_ coto- &, cot8]j = 0 (3.116)

The non-zero solution of this equation is

_g.cotf-¢g cotf

V= cot’ 9+1 (3.117)
cotBhe, — €.
= ——i(—l———) (3.118)
sin” @
= sin® Gcot 9(6; - s_). (3.119)

Seen in 2 more convenient form through application of the trigonometry identities as
y =sin 6cosB(s+ - e_). (3.120)

Recalling Equations 3.105 looking for. Back and 3.106 we see that Equation 3.120 is ¥ in

terms of a, b, 8 and * , exactly what we were substituting for & and B we have

a=¢ +ycotd (3.121)
=¢g_+sinfcos 0(&; - e_)cot 0 (3.122)
=¢_+cos’ fg, —cos’ Ok (3.123)

leading to the useful form
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a =g +cos* Be, - £). (3.124)

For fwe get

B=¢, —ycotd (3.125)
=g, —sinfcos 9(a+ - s_)cot 6 (3.126)

leading to the form we want

B =&, - cos’ 9(s+ -~ a_). (3.127)

Equations 3.120, 3.124 and 3.127 establish 2 direct relationship between the

covariance matrix and the data parameters 2, b, 8 and x”.

B. N+1 COMBINATORIAL EFFECTS

The ability to combine multiple error ellipses, yielding the position vector and the
associated covatiance matrix is provided through Equation 2.51. This section is concerned
with the effect of including an additional error ellipse to the existing solution, i.e. the N+1
case. In order to more clearly describe this problem, let us look at an example containing
three ellipses. The question posed is will the solution for the case when all three

observations are taken at once, as depicted in Figure 3.4,
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Figure 3.4 COMBINATION EXAMPLE (a)

be equal to the solution for the case in Figure 3.5, where two ellipsoids are initially

processed, then a third is combined to that solution?

-

Figure 3.5 COMBINATION EXAMPLE (b)

Formally stated in Equation 3.128, we need to prove that the probability of the
solution vector X given N+1 observations is equivalent to the probability of x given N

observations given an additional observation.

P(P(xlol...o N )|o N+1) = P(xlo,...0 wat) (3.128)

The optimal estimate for the combination of N observed error ellipses was derived in

Chapter II. Substituting the scaled covariance matrix €into Equation 2.51 we see that
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x= (i f};‘j— (i i};‘o,) =} (i i}{’o,) (3.129)

where

C, = (Z l};lo,.) = €7'=)C". (3.130)
i=1 i=1
€' is 2 new variable introduced to differentiate between the previously summed and the yet

to be summed N+1 cases. The scaled covariance matrix for the solution of N+1

observations 1s

N ~ P~ ~ ~
Cil= (Z ¢’ +¢1;,‘ﬂ) - (€ +€;) (3.131)
i=1
~ -1 a1 -1
C,.-(¢;"+&}) (3.132)

Now let’s work through the N+1 solution
Co(Na L Y | »
Xyu = [Z c?’) (Z 0?‘0,) (3.133)
i=1 i=1
N - lr v N
= (Z c:l + c;flﬂ) (Z ci_loi + c;\llHoNHJ (3134)
i=1

i=1 i=

i}i_loi + aI_VIHONHj (3-135)

M=

(@ &)

H

1]
—

. N
-1, &1 g g1
(01:' + cNH)xNH = Zci o, +€y, 0y, (3.136)
i=1
~ ~ ~ ~ ' N ~ ~
-1, g4 -1 -1 -1
(01:! + eN+1)xN+1 =Cy &Zci o, +€y 0y, (3.137)
i=1
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where €€}, =1

(ész_] + é;vln)xmt = ézr/_lxzv +a;/l+1°1v+1 (3.138)

~ ~ Ar ~ ~
Xya = (01:'-1 + c;llﬂ) [vz:rﬁlxN + c—l\-leoNH] (3139)

—~ N+1
= c;m(z c;‘o,.) (3.140)
i=1

Which agrees with Equation 3.128 proving the N+1 case is valid. This proof is critical
from a software engineering point of view. Consider the N+1 case not valid. A piece of
software wanting to keep a track updated over some amount of time, would need to store
the information from all prior observations in order to update it’s location and associated
error ellipse. Since the N+1 case is valid, only the most recent solution needs to be

retained. Allowing all previous fixes to be discarded, freeing memory for other tasking.

C. ELLIPSE ROTATION

A change of axes will be required in order to place the error ellipses that are to be
combined in an approximately orthogonal coordinate system. In the latitude/longitude
coordinate system, as latitude increases the coordinate system becomes progressively
distorted. The closest approximation to an orthogonal coordinate system within the

latitude/longitude coordinate system is found by transforming the ellipse center to a
coordinate system where $=0, A=0. Where ¢ is latitude and A longitude. This coordinate

system will be referred to as the prime or €g,éy,é coordinate system.

The process will begin by defining the &z ,é,,,é coordinate system axes in terms of
¢ and A with respect to the original éy,é,,é, coordinate system. Figure 3.6 depicts all

axes and angles relevant to the transformation between the two coordinate systems.

39




Figure 3.6 ROTATION COORDINATE SYSTEM

With the aid of Figure 3.6 the axis of the prime coordinate system é;, €, and &

are defined as follows
& = cos(M)cos(9)é;; +sin(A) cos(9)é,, + sin(9)é, (3.141)
ér = cos(n+1) cos(% - ¢)éx +sin(\ + 1) cos(-’zE - ¢) é, + sin(—;£ - ¢) é, (3.142)

= —cos(A)sin(g)é, - sin(4) sin(g)é, + cos(9)é, (3.143)

As a simple check we verify that & and & are orthogonal by confirming their dot product

is zero.
& 6 =~ cos’ (1) sin()cos(¢) - sin? (1) sin(¢)cos(d) + sin(¢) cos(p) (3.144)

= -[cos2 (4) +sin® (l)] sin(¢) cos(¢) + sin(¢) cos(¢) (3.145)

=0
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The third axis is easily found by the cross-product of the two previous directional vectors

6y = érxCe (3.146)
= —sin(}) cos(1) sin($) cos(¢)é; + cos(A) sin’ (9)é, +sin(A) cos(1) sin(¢) cos(9)é,

—sin(A) sin® (¢)é,; + cos(X) cos” (9)é, —sin(}) cos? ()6, (3.147)
= —sin(A)é,, +cos(1)é,, (3.148)
To ensure thoroughness, the remaining combinations of axes are checked to be orthogonal
8¢ -6y = —sin() cos(A) cos(9) + sin(A) cos(A)cos(9) = 0 (3.149)
ér - &, = sin(1)cos(A)sin(¢) — sin(A) cos(2) sin(¢) =0 (3.150)

The unit vectors in the éy,é,,,é; coordinate system can be express as a relationship

of the directional cosines relative to the é‘g,é\n,é‘g coordinate system. In unit terms

Iy by = cos(fx,f x') , which leads to the following

6y = (848 )ee + (2 8 Jen + (6 -ég)éq (3.151)
= cos(M) cos($)é:. — sin(R)é, — cos(M)sin($)e; (3.152)
6y = (8, 6c)ee +(6y-én)en + () -2c)ec (3.153)
- sin(A) cos($)é, +cos(A)éer — sin(A)sin(9)é; (3.154)
6, = (8,82 )6e + (6 -en)on +(6: -2 ) (3.155)
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= sin(cb)é;: + cos(d))ég (3.156)

x
If we have coordinates X =| y|in the é,é,,é; coordinate system, the coordinates of the

4

same point in the ég,éy,é coordinate system are

>

& € e, €, e, é,-¢|x
S M povr i 157
§) \é-é, é-¢ ¢é-é)\z
cos(A)cos(¢)  sin(A)cos(¢) sin(9))(x
= -—sin(}) cos(A) 0 ||y (3.158)
—cos(A)sin(p) —sin(A)sin(0) cos(p)/\ z
The mverse transform is
x ¢, €, ¢, -€, 6.6 |¢
x=|y|=|e, ¢ -8 é-é&l|n (3.159)
) 6,8 a6 &8 )\¢ |
cos(A)cos(9) -—sin(r) —cos(}) sin())( €
=| sin(A)cos(9) cos(r) —sin(R) sin(9) || n (3.160)
sin(¢) 0 cos() d

If we let ¢; , A denote the latitude and longitude of a point in the éy,éy,é, coordinate

system. Then X; can easily be expressed in terms ¢i and Ai

x)  [cosg)cos(4)
X =y |= cos(q),.)sin(ﬂ,.)
Z. sin(¢,.)

(3.161)
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The coordinates of the point in the &z ,éy,€ coordinate system are

& cos(A)cos(g)  sin(2)cos(g) sin(g))( cos(¢ ) cos(4,)
£.=|n| =| -sin(d) cos(4) 0 || cos(¢)sin(2)| (3.162)
¢ —cos(A)sin(¢) - sin(2) sin(g) cos(4) sin(¢,.)

If ¢, 4 denote the latitude and longitude of this point in the & ,éy,é; coordinate

system, then

& cos(}:. )cos(ﬁ:)
E,=(nm| =|co 417,)51n(/f,) . (3.163)
[ sin(?)

Equau'oh 3.163 can be used to derive the latitude and longitude of the point in the prime
coordinate system. Table 3.1 shows the range or value of the longitude of the point after it

ts rotated.

. 1 T _+~ T
¢ =sinT(&;) -5 < ¢,-s-2— (3.164)
A= tan‘l(ﬂij —m<h <T (3.165)
&i
Table 3.1 Ranges of Prime Longitude
If § =0m; =0 A =0 If & <0,n; >0 §<’X,-<n
~ T ~ T
If §;,=0,m;>0 ?»,-:E If & <0,m; <0 —n<}»i<——2—
If & >0, >0 0<X,-<g I£E <Om; =0 Aj=m
If &i>0’ni<0 —12t—<X,-<0 Ifgi>o’ni:0 7»,-20

If §i=0,n,~<0 xi:—
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In order to transpose the heading of an error ellipse between the two coordinate
systems we must know the relationship between the semi-major direction vector and the

north pole. The coordinates of the north pole in the éy,€y,é; coordinate system are

0
x, =|0 Onp = s hnp =0 (3.166)
1

The coordinates of this point in the & ,é‘n,ég coordinate system are found when Equation

3.158 is applied to the north pole from the éy,éy,é; coordinate system

&, cos(A) cos(¢) sin(4) cos(¢) sm( ) 0
Ep = Thp - sin(2) cos(A) 0 ||0 (3.167)
1

¢ —cos(A)sin(¢) — sin(2)sin(g) cos(9)

sin(¢)
0 (3.168)

cos(¢)

Using Equation 3.168 we find the latitude and longitude of the north pole in the 'pdfné'

coordinate system

~

=sin"'(cos(9)) ,0<4,< -725 (3.169)

~ o o _foif¢=0
Anp = tan (sin(@) ”{n if$p<0 (3170)

D. ELLIPSE HEADING RELATIVE TO NORTH POLE
The individual error ellipse headings relative to true north are changed during the
axes transformation. Consider an ellipse at some arbitrary latitude, with a heading of true

north. When the ellipse is transformed to the prime coordinate system, the heading is no



longer valid as depicted in Figure 3.7. This section will present the process which calculates
this change in heading.

Figure 3.7 HEADING ERROR

The first step in this process is to determining each error ellipse heading relative to
true north . Let two points have latitude and longitude ¢,,4, and ¢,,4;. We want to find
the heading from A to B at point A measured relative to true north. The following pseudo
code addresses the four trivial cases: one of the points is located on either of the

poles, A, = A, and A, = Az £ 7 . Firsta point located on the north pole

/3 T
If¢A=-5,¢B¢—2* then o, =7

7
If ¢B:E , ¢A¢-72£ then @, =0

For the south pole

r V1

If¢A=——2—, &5 iy then w,; =0
r z

If¢B=—-2—, ¢A¢—E then w,, =7

Now the 4, =4, case

A, =4
If¢, <o
@, =0

45




ElseIf ¢, > ¢,

W=7
and the final trivial case, 4, =4, £ 7
KA, = t7
If ¢, 2~
@,z =0
ElseIf ¢, <-¢;
Dy =7

If no trivial cases are valid apply Napier’s analogies.

With the trivial cases out of the way we move on to examine the cases where
Napier’s analogies will need to be applied. Refer to Figure 3.8 for notation definitions used
in the following problems. First consider the case where the longitude of point B is greater

than that of point A

AN=Ag—Ay
AL>0; AL <

Figure 3.8 HEADING BETWEEN POINTS B AND A

The points involved in this problem lie upon the surface of the earth. Taking this into
account we must look to spherical trigonometry for a solution. Napier’s analogies (Selby,
1967) provide the relationships from which this problem can be solved. Employed below
we find that




and that

eeeeee
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(3.171)

(3.172)

(3.173)

(3.174)

(3.175)

(3.176)



(1
1 Sm(i [04 - ¢B])
—[m AB — O BA] = tan ! cot(— A?») (3.177)
2 2 1
COS(;[‘PA +¢B])
and Equation 3.176 is equivalent to
1
1 1 COS(E[“ ~03 ])
E[a) AB +coBA] = tan~! COt(E A?»j (3.178)

sin(%[dm + ¢BD

Therefore we can find @, and @, through the following two formulas

1 COSG[“ 'd’B])

© 4B = tan ™! cot(—Ak Sin(%[d’A +¢BD

sinf ~[0.4 - ¢5]
+tan ! cot(%Al) cos%zl[d)A +¢B]))
2

(3.179)

1p g .
Opg = tan™! cot(% AA COS(? [¢A _ ¢BD —tan~ cot(?l)‘- A?&) sm(_Z; [¢A j (bB]j
sin(z[dm +¢BD CO{E[M +¢B])

(3.180)
Putting these angles in terms of heading we find that the heading from point A to point B is
Heading 4 > B=0 4p (3.181)

and the heading from B to A is the mirror image of A to B

Heading B—> A=27-0 gy (3.182)



Figure 3.9 illustrates the case when the longitude of A is larger than the longitude of B

AA=hy-Ap

AA>0; AA<m
i3 s
#Et— #+—
b4 5 op 5

Figure 3.9 HEADING BETWEEN POINTS A AND B

Here the same formulas for @,5 and @, apply. The heading from point A to Bis

Heading 4 > B=2n-0 43 (3.183)
and the heading from B to A is the mirror image of A to B

Heading B—> A=o0py ' ‘(3'.1'84')‘

Now that we understand the how to obtain the heading between two points the

next step is to apply this theory to our two coordinate systems. Let ®; denote the heading
from the center of each ellipse ¢ ,A; to the north pole§,,, in the EnC-coordinate system.
To find @;, let EE,-,X,- = point A and &,, = point B and execute the pseudo code in the
beginning of this section. If 6; is the heading of the ellipse at the point ¢;,A; in the xyz-

coordinate system, then the heading of the ellipse at the point ®; ,7»,- in the Eng-coordinate

system is the sum of the original heading and the offset caused by rotation

~

(-),- = ('6,- +9i (3.185)
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IV. COMBINATION ALGORITHM

A. PROCESS OUTLINE

The Combination Algorithm will apply the theory and concepts from Chapters 1I
and TII to the real world environment. The input parameters for the combination
algorithm will consist of a set of error ellipses with center ¢ , A; (=1, ... , N), semi-major
axis A, , semi-minor axis B; , heading 6, and probability p, (= z!). The algorithm outlined
below will process the N input ellipses and produce a solution ellipse that represents an area
that has the specified probability that the target lie within it's bounds. Following is the

Combination algorithm presented in a step by step manner.

1. Input a set of error ellipses with center ¢, A (=1, ..., N), semi-major axis A;,
semi-minor axis B, , heading 6, and probability p; =7 ), where ¢; , A refer to the latitude

and longitude respectively. The semi-axes A; and B, are in an approptiate unit of length, 6,
in degrees and the desired probability level p refers to the confidence that the target lie

within the generated solution ellipse.

2. Project semi-axes A;and B; onto a plane to obtain a; and b;, where

_ (é_f_j 41
a, =r,tan ; 4.1)

e

EN §
x‘_reta‘nr ()

e

Rationalization and development of Equation 4.1 and Equation 4.2 is presented in
Chapter ITI.A.1, Scaled Covariance Matrix.

3. Find the eigenvalues corresponding to the semi-major axes &, semi-minor axes b;

and the probability level p of each ellipse, where
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=5 43)
b
En =7 (4.4

Equation 4.3 and Equation 4.4 find their bases in Chapter IL.A, Relationship of the
Error Ellipse to a Bivariate Normal Distribution. The values of p for the o distributed
function are given in Table 2.1.

4. Find the first approximation for the combined location of the center of the

ellipses
1 N N
X = -ﬁg x, = %; cos(qﬁ,. )cos(ﬂ, ) 4.5
1 & r, v ,
y= N ; Yo Ty ; cos(¢,. ) sm(i, ) (4.6)
z=—l—§z = L"—isin(¢) 4.7
N3 i NI i : o
o= sin_l(—z-) 4.8)
re
—tan-1[ 2
=t @9)

The first part of this step finds the simple average of the (x,y,z) components of the

individual error ellipses. Note that the information within the individual observation

X;

vectors X; , where X, =1 ¥, |, should be retained for future use. These X; vectors will be

Z.

H

needed for Step 5. The second part of this step converts the averaged (x;):,2) components,
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producing the latitude ¢ and longitude A which is an approximation of the center of all the

observed error ellipses.

5. Transform the location of the center of each error ellipse from xyz-coordinates

to £nd~coordinates (prime coordinates).

& cos(A)cos(g)  sin(A)cosg) sin(g))(r, cos(¢)eos(1,)

i o= —sin(4) cos(A) 0 |, cos(¢,. ) sin(i,) (4.10)
¢ —~cos(A)sin(g) - sin(4) sin(g) cos(9) T, sin(¢,.)
cos(2) cos(¢) sin(4) cos(¢) sin(¢) X,
= ~sin(A) cos(A) 0 Iy, (4.11)
—cos(4) sin(¢) ~sin(4) sin(¢) cos(¢) z,
g =sin”' (—9 4.12)
~ S
7 =tan ( : j 4.13)

Note that X; calculated in Step 4 does not need to be recalculated to obtain §,,

5

where &, =| 7, |. The transformation matrix used in Equation 4.10 is based on Equation
&

3.158 developed in Chapter II1.C, Ellipse Rotation. During this step the first approximation

coordinates @,A4 (Step 4) are the focus upon which the coordinate system is rotated as

illustrated in Figure 4.1. The end product being the spatial relationship of each observation

@,A to the first approximation ¢,,4, is maintained, but transformed to a coordinate system

where ¢ =0,4 =0. This transformation is required compensate for the difference in arc-

length due to a fixed change in longitude as the latitude increases from zero.
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First Approximation
Coordinates

Figure 41 COORDINATE TRANSFORMATION

6. Find the coordinates of the north pole in £né—coordinates .

5;,, = sin"(cos ) (4.14)
~ 0 if ¢20
w=1r it $<0 415)

Location of the north pole in prime coordinates is needed to solve for the new
ellipse heading after the coordinate rotation. Figure 4.2 shows the geometry involved in the

pole rotation. Equations 4.14 and 4.15 were obtained form Equations 3.169 and 3.170.




Figure 4.2 NORTH POLE ROTATION

7. Find the heading @, from the center of each error ellipse ¢, ﬂ: to the north

pole an, Z,p in éné—coordinates.

The process for this step is detailed in Chapter IILD, Ellipse Heading Relative to

~ ~

North Pole. In execution, the first move is to examine the trivial cases 4 =4,, ,

~

=1 + 7, and the case where one of the points 1s located on the north pole. In the
np 1% p

likely event that none of the trivial case match, Napier’s analogies must be utilized by

employing Equation 3.179.
8..Find the heading of the error ellipses in n7g—coordinates
g =0a,+6 (4.16)

The heading of the individual error ellipses in the prime coordinate system is the
sum of the heading of each error ellipse @, (Step 7) and ellipse’s heading in xyz-coordinates
(Step 1).

9. Find the scaled covariance matrix cofresponding to each error ellipse

o
wn




C = (a" 4 ") 4.17)

vi B
' -— ( A _7") 4.18)
Ewmé-m NV &
o, =& +cos’ § (e+(,.) - s_(,.)) (4.19)
B =&, —cos’ § (e;(,.) - 6‘_(,~)) (4.20)
Y, = sinﬁ, cosé. (e+(,.) —a_(,.)) (4.21)

Along with the scaled covariance matrix 'N}i, Step 10 will require the individual

ellipse scaled covariance matrix inverse €' also be calculated. The elements of these

matrices are derived in Chapter II1.A.3, Variable Relaﬁonships.

10. Find the 2x2 scaled covariance matrix for the sum of the error ellipses

C =il~};‘ = (G U) . (422

i=1 v T

~ o -1 3 1 T —l). _ a y
)\ =(c) = m_uz(_v 6) = (y ,3) (4.23)

Equation 4.22 is a result of the methodology outlined in Chapter ILC. The 2x2

scaled covarance matrix for the sum of the error ellipses C produced in this step
represents the solution ellipse that has the specified probability that the target lie within it’s

bounds. The location and heading of this solution ellipse has yet to be determined.
11. Convert the 2x2 scaled covariance matrix for the sum of the ellipses to the 3x3

matrix c( tmd)
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-1 re
S = . 1
r, cosg

-1 A
c(;x,h): o % 0
0 0 O
(¢ 3¢ 9¢)
¢ oS1 Oh
|21 9n on
|24 o4 Oh
¢ 24 9¢
\8¢ oS4 Jh)
& _ T
Ciro=TC; ;)T

(4.24)

(4.25)

(4.26)

4.27)

(4.28)

There are four tasks to accomplish prior to producing the 3x3 scaled covatiance

matrix for the sum of the ellipses é( £nd)” First, the inverse of the scaling matrix defined in

Equation 3.7 must be generated. Second, using the 2x2 scaled covariance matrix € from

Step 10, calculate the unscaled covariance matrix in terms of latitude and longitude. Next,

populate the 3x3 unscaled covariance matrix. This matrix 0(3 ) is in terms of latitude,

longitude and height. Lastly, the 3x3 scaling matrix T needs to be produced. T contains

the partial derivatives of &,77 and ¢ with respect to é, Aand h (Equations 3.19 thru 3.27).

With those tasks complete é( £.ng) €20 be calculated. This conversion process is described

in detail in Chapter II1.A.2.a 2x2 to 3x3 Covariance Matrix Conversion.
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12.Find the weighted average location for the center of the etror ellipse in &ng-

coordinates

S N
g = |n| = €€ (4.29)
¢ RN

¢ =sin” (9 (430)

A= tan"(ﬂj (4.31)

The vector & represents the location of the weighted average of the N
observations. The theory behind Equation 4.29 is presented in Chapter ILC, Methodology.
The new latitude ¢ and longitude A are in essence refinements of the rotated first

approximation. The level of refinement will be monitored once the solution is transformed
back to the xyz-coordinate system. If convergence upon the true solution is not obtained,

an iterative process will begin.

13. Find the eigenvalues of the combined covariance matrix.

6, =3la+p)+5]la-A) 4] “32)

L(oc -B) + 4}'2? (4.33)

|-

£ =%(a+,ﬁ)—

where a,8 and y are obtained from Equation 4.23.

The eigenvalues produced in this step are the key to extracting information about
the semi-major axis, semi-minor axis and heading of the covariance matrix. Equation 4.32
and Equation 433 supply the real solutions to the characteristic polynomial of the

covariance matrix discussed in Chapter III.A.3.a, Figenvalues.
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14. Find the heading of the error ellipse in the {n¢—coordinate system

g = tan”(g : ﬂj (434

+

The error ellipse heading is derived from the § and 7 components of the

eigenvectors found in Section I11.A.3.c, Eigenvectors. The development of Equation 4.34

can be found in Chapter II1.A.4, Variable Relationships.

~ o~

15. Find the heading & from ¢, A to B> A

np *
The same process found in Step 7 is utilized here.
16. Find the heading of the error ellipse in the xyz-coordinate system
0=0-& (4.35)

The heading of the error ellipse in the xyz-coordinate system is found subtracting
the heading offset due to rotation from the ellipses heading in the prime coordinate system.

Note that Equation 4.35 agrees with Equation 4.16 from Step 8.

17. Find the coordinates of the weighted average location for the center of the

error ellipses in xyz-coordinates

X cos(A)cos(g) —sin(A) - cos(4) sin(g))( &
5| = |sin(A)codp) cos(1) - sin(A) sin(g) || 7 (3.36)
z sin(g) 0 cos(¢) 4
e
¢ = sin (r,j (4.37)
5 o 2
- -
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The transformation from prime coordinates to the xyz-coordinate system is

developed in Chapter IT1.C, Ellipse Rotation. This step is the inverse of Step 5.

18. Check for convergence

If ‘¢—¢5‘<K¢ and lﬂ—ﬂ«g then
goto Step 19
else set

R)

x= yy
$=9;
and go toStepS

In some cases the difference between the first approximation and the

weighted average location my be significant. By setting values for x, and k thatare small

an iterative process is established to fine tune the solution.

19. Calculate the semi-major and semi-minor-axes of the combined error ellipse for

the derived probability level
a=qr’e (4.39)
(4.40)'
The semi-major and semi-minor axes of the combined error ellipse are found by
utilizing the eigenvalues calculated in Step 14 and 2 selected chi-square number for Table

IL.1. Chapter ILA, Relationship of the Error Ellipse to A Bivariate Normal Distribution
gives the otigins of Equation 4.39 and Equation 4.40.

20. Project the semi-major and semi-minor axes from the plane to a spherical earth

a
A=r, tan™ (—r—j (441)
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Bor tan(—rb—J (442)

The last step in the Combination Algorithm places solution ellipse back onto the

spherical earth. This reverses Step 2 and supplies the last parameters of the solution ellipse

which consists of latitude ¢, longitude A, semi-major axes A, semi-minor axes B, and

heading 6.

B. PROCESS FLOW CHART
Figure 4.3 provides a condensed view of the algorithm. For details of specific steps

refer to Section A of this chapter.

: 3 Find heading in the xyz-
Input error ellipses Find heading of the error !
ellipses in prime coordinates coordinate system
Project ellipse serni-axes ] Fird the scaled covariancs - - ]
. N ransform weighted average
onto plaﬂe matrix corresponding to each to the xyz-coordinate system
error ellipse
Find exgerwalua corres)
semi-xes of cach dlipse Convert the scaled covariance ' check ™
matrix from a2x2 o a 3x3 for
Find first approximation for mafix converence
combined location
Find weighted average e
i elli
Transform center of all ellipses location of error ellipses Calculate semi-axes for
to prime coordinates L desired probability
Find eigenvalues of the
- - combined covariance matrix - -
Find coordinates of north pole Project solutionfrom plane to
in prime coordinates | spherical eatth
[ﬁnhmdmgmmme J
Find heading from the center
of the ellipes to noth pole in l
prime cormdinates Find heading to north
‘ pole in prime coordinates

Figure 43 PROCESS FLOW CHART
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V. SUMMARY & CONCLUSIONS

A.  AREAS FOR FUTURE STUDY

One of the key assumptions made in the development of this algorithm was that the
error ellipse data is derived from a bivariate normal distribution. Several transformations
were made throughout the derivation to transform spherical data to a form that could be
analyzed using a bivariate normal distribution. When the error ellipse is small (a << r_g) the
probability distribution is highly localized and these transformations lead to a good
approximation of a spherical probability distribution. The algorithm developed here will
therefore be applicable to most error ellipses obtained from operational systems. Strictly
speaking, however, we should have used a probability distribution more suited to spherical
data, the Kent distribution (Fisher, Lewis, Embleton1987). While this distribution is more
difficult to work with, it would be valid for error ellipses of all sizes. This issue should be

examined more fully in the future.

There are three remaining areas relevant to this thesis that are available for future
research. The first and foremost is to design and implement a test and validation program.
The validation program would provide a means to quantitatively verify the theory put forth
in this research. The project would entail producing computer code to implement the:
Combination Algorithm. Real wotld data sets are available to compare against output that

would be generated by the program.

Broadening the Combination Algorithm to include multiple source data is the next
potential research area. The ability to correlate observations from multiple platforms would
greatly enhance our national warfighting capability. Decision makers would no longer need
to mentally extrapolate a solution from numerous observations of the same target. The
generation of this composite geolocation would reduce total decision cycle time, ultimately
leading to increased force effectiveness. With an effective combination algorithm in place
the need to transmit multiple geolocations of the same target would be eliminated, reducing
flect bandwidth requirements. By combining observations of the various platforms both

bandwidth and data storage requirements are reduced. The reduction would be a result of
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two factors: (1) collection platforms will combine same source observations reducing the
amount of data to be transmitted, (2) once the collection platform solutions are recetved
and combined into a composite solution the data received from the collection platforms can
be discarded. The problem of including multiple source data could be approached by
expanding the observation vector to include system dependent biases such as atmospheric

delays and refraction.

The third area to consider for future research is the correlation of observations
obtained of a moving target. Expanding the domain of possible targets from fixed site to
include mobile platforms would significantly reduce the information presented to a decision
maker. By expanding the number of platforms available for data reduction through
combination, bandwidth and data storage resources are conserved. The inclusion of
moving targets might be accomplished by sampling and processing a discrete number of hits
over a large number of observations. Those interested in pursuing any one of these area

can contact NRaD Code 841 for information on current research.

Areas of interest observed during initial attempts to implement the Combination
Algorithm revolved around data structure design. Because the vast majority of operations

to be performed in the algorithm involve matrix arithmetic, a language designed to for that

purpose such as MATLAB is recommended. If C++ is to be used, it is recommended that

an established toolbox of data objects and algorithms such as M++ by Dayd Software be
utilized. Because of the large number of multi-dimensioned arrays required to code this
algorithm a large memory model will be required. In the event that a smaller memory
model must be used, the number of observations the program will be able 0 process will
be severely restricted. To further reduce the strain on memory resources dynamic allocation

of objects should be incorporated.
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B. CONCLUSION

This thesis has set the theoretical basis and developed an algorithm for optimally
combining multiple small spherical error ellipses into 2 single error ellipse. This algorithm is
applicable to most of the error ellipses produced by operational systems. When this
algotithm is validated it could have a major impact on how geolocation data is presented to
the warfighter. In the future, as the electronic density of the battle field increases, the need
for fusion of geolocation data will become increasingly apparent. This work can be
considered the first step toward providing the warfighter with a fused multi-sensor

geolocation solution.
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