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1 Introduction

The purpose of this document is to present a formalism fdissitaally averag-

ing source positions and their uncertainties for use in ¢hrelt3 pipeline. More
specifically, the problem addressed here is to find an imgr@stimate for the
position of a source from previous independent estimatés pbsition. The un-
certainties of the estimates are expressed in the form of eilipses centered
upon the estimated positions.

This document is organized as follows: In sectk#) the much simpler one-
dimensional problem of optimal weighting is addressed.tiBeg3 extends the
approach o2 to the multivariate case section. Then in sectjérthe results of
section§3 are applied to the two-dimensional case involving the ggldmparam-
eters of the error ellipses after projection to a commondanglane. The tangent
plane projections themselves are discussed in segfioA brief summary that
provides a sort of road map to the key equations necessatlydamplementation
of the methodology follows ig6. Finally there is an appendix that contains the
code-listing for &5-L ang implementation as well as an example of its use.



2 Optimal Weighting

Before tackling the more generatdimensional case, it is useful to consider the
simpler 1-d case. Suppose thgtrepresents theth estimate of the mean of
some quantity, e.g., a temperature, andofebe the variance of theth mean.
Given a set of such estimateg of the mean, and the corresponding set of vari-
ancesr2, what is the best way to combine these to obtain an improvedat of

the mean and the variance of that estimate? The approaah ltake is to use an
optimal weighting scheme that minimizes the resultingarace. Letr denote the
improved estimate and let, be the set of weights. Then an unbiased estimate of

1S
1
r=— a_aa 1
T= za:w z (1)
where
w=> 1w, (2)
That is,

p=(z), 3)
where(-) denotes the expectation value, and the individual estsnatare as-
sumed to be unbiased.

From equation (1) it is easy to show that

Var[z] = Z (%) “Var(z,). (4)

The conditions forr? to be a minimum may be obtained by differentiating the
above equation with respectg. This procedure yields

wyVar(z,) = % > wiVar(z,). (5)

Since the right-hand-side of the above equation is indegenaf b, it follows
thatw, is proportional tol /Var|z,|. Substituting these weights into equation (1)

produces »
T = {ZVar[xa]‘l} > Varlz,] 'z, (6)
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which, by construction, is the linear combinationigfwith the smallest variance.
Substituting the weights into equation (4) yields the vaecainz:

Var[z] = [%:Var[:za]l} _1, 7)

allowing equation (6) to be written as

z = Var(z] Yy Var(z,] 'z,. (8)

3 TheMultivariate Case

In this section, the previous technique is extended to tHévatiate case. Lek,
represent theth estimate of the mean of some N-dimensional quanptignd let
o, denote theV by N covariance matrix associated with this estimate. That is,

0aij = (Xai — 1) (Xaj — 15)), (9)
wherey,; = (X, ;). From the above equation it is straight-forward to show that
<Xa,iXa,j> = Oaq,ij + i fls - (10)

An improved estimat& for ;. may be obtained by a weighted sum of the individ-
ual estimates(,, i.e.,

X = Z W, X,. (11)

Here,IV, are a set ofV by N matrices whose matrix elements are to be obtained.
In order thatu = (X), it is necessary for the matrix elements to satisfy the con-
straint

8= Wai. (12)
It is easy to show that the covariance matriis given by

oij = ((Xi — i) (X5 — p13)),
=3 (WaoaW)),. (13)
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Now let R be a rotation matrix that transforms the vectorto X’ = RX. Then
it is easy to show that transforms as

o' =RoR (24)

It is well known that the above (similarity) transformatioray be used to diago-
nalizeo by choosingR appropriately. In the basis whetéis diagonal the product

of the diagonal elementg, may be used as a measure total variance as this prod-
uct is related to the volume of the ellipsoid associated Wighcovariance matrix.

In the diagonal basis, the produd, o;; also corresponds to the determinant of
o', denoted here adet(¢’). Since the determinant is invariant under similarity
transformations, it follows thatet(¢’) = det (o).

In other wordsget (o) corresponds to the volume of the covariance ellipsoid and
is taken as a scalar measure of the “total error”. Hence, #gightsV, ;; will
be chosen to minimize the determinant of the covarianceixatsubject to the
normalization conditions of equation (12). The constaare most easily handled
through the use of Lagrange multipliexs, where the function to be minimized
may be written as

det(0) + Xij (05 — Y Waij)- (15)

Here and in the following, the Einstein summation convantgused where un-
less otherwise specified, repeated indicés. . . are to be summed over.

The minimization conditions follows in the usual way and nhaywritten as

0 det(o)
_deM9) 16
0 OWaij “ (16)
and
0=2d;; — E Waij- 17)

The derivatives involvindgV, ;; may be carried out using the chain rule
ddet(o)  Odet(o) doyy

: 18
6VVa,ij 6O-lm 6Wa,ij ( )
It is left as an exercise for the reader to show that
Ao,
a{/vl — = 030a,jkWamk + Wa 1k0a 1 Omi- (19)
a,ij
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By expandinglet(o) in terms of its cofactors, one can show (see any advanced
linear algebra text) that
0 det(o)
60’1m

Together with the last two results and equation (18), themiration condition
given by equation (16) may be written in the form

Aij = 2det(0) (aflwaaa)ij.
Since the left-hand-side of this equation is independent, af follows that W,
must be of the formio, !, whereA is some matrix that is independentofThe
normalization condition of equation (12) may be used tomeiee A yielding

W, = [Z o] 710;1. (22)
b

= det(o)o;, ). (20)

(21)

Substituting this result into equation (13) and exploitthg symmetry ot pro-

duces )

U:[ngl} . (23)
Finally equation (11) may be written

X=0) 0,'X, (24)

which is the main result of this section. Note the formal neBkance of this
equation to the univariate case in equation (8).

4 Computing Covariance Matrices

As seen in sectiof§3, covariance matrices play a fundamental role in combining
error ellipses. This section deals with the computatiorefdovariance matrices
from the parameters that characterize the elliptical gégmitis assumed that the
ellipses have been projected to a common tangent plane saslib in section
§5.

The geometry of each error ellipse is specified by five pararagdf which three
are directly related to the covariance matrix. These ararigdef that the major
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axis of the ellipse makes with respect to the tangent plaaeis, and the semi-
major and semi-minor axis lengths. The lengths of the seajpmand semi-
minor axes correspond to the 1-sigma confidence intervatgydhese axes. More
specifically, in a basis whose origin is at the center of thpss, and whosg axis
is along the ellipse’s major axis, the correlation matrix is

12
0
o = ( 0'01 - ) . (25)

Here,o! is the 1-sigma confidence value along the minor axis of thpse| and
ob is that along the major axig{ > o}). The form of the covariance matrixin
the unrotated system follows from equation (14) using

R ( cosf) —sinf ) (26)

sinff cosf

to yield
> 0" cos?0 4 o'3sin?0 (o' — 0'?) cos O sin b 27)
(03 — 0 cosfOsin® o'7sin0 + o'5cos20 )
It is left as an exercise for the reader to show that the imverkations are
1 2
6=~ tan~" (——2—), (28)
2 022 — 011
i -
O'/? = 5 0'11—|-O'22— \/(0'22—0'11)24-40'%2 y (29)
and o -
O-/;IQ 0'11—|-0'22+\/(O'22—0'11)2+40'%2 . (30)

5 Tangent Plane Projections

In order to combine the confidence ellipses via equation, (R#) first necessary
to project them to a common tangent plane. This proceduresdsribed in this
section.



The ath estimate of the source position is specified as a confideltipse cen-
tered upon the celestial coordindte,, ¢, ), with the major-axis making and angle
0, (—m < 6 < m) with respect to the local line of declination at the centethe
ellipse. The arc-length of the semi-minor axis is given B/ hluep™"" and that
of the semi-major axis is given ay"a".

The celestial coordinatéy,, d,) corresponds to a unit-vectgy, on the celestial
sphere with coordinates given by

Pa = T COS (yy COS Oy + 7 SN (v COS O + 2 SN 0. (31)

Conversely, a unit vectgi, corresponds to the celestial coordinate

(g, 6,) = (tan™ 8;“ i%, sin™ (Pa - 2)), (32)

which is the inverse of equation (31).

An orthonormal coordinate system is defined at the pointesgted by, con-
sists of the three unit vectofs, &,, andd, where

Gy = —Tsina, + 7 cos a, (33)

and )
0y = —Z sind, cos a, — ysin d, sin a, + 2 cos . (34)

Note that), points along the direction of increasing declination atghsitionp,,
whereasy, points in the direction of increasing right-ascension. $ami-major
axis of the confidence ellipse associated with this posiakes an anglé, with
respect td),. The sign o), is in accordance with the right hand rule wittp, as
the rotation axis. Fof, = 0, the “positive” end of the semi-minor axis will have
coordinatega, + ¢M §,) and correspond to a unit vectgf'"*, whereas the
“positive” end of the semi-major axis will lie dtv,, , + ¢™¥°") and correspond
to the unit vectop™@°". Forf, = 0, these unit vectors are given by an equation of
the same form as equation (31). The vectors that corresmondr-zero values
of §, may be obtained by rotating tltg = 0 values about the-p, axis by the
angled,. This operation is most easily carried out in the local cowte basis
(Gia, 04, Pa) Producing

P = p, cos PN + Gy, sin 9" cos O — O, sin P sin 6 (35)
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and
Do I = Py cos @F A+ Gy sin ¢ ¥ sin 6 + 0, sin ¢ cos 6. (36)

These two equations along with with equations (31), (330, @4) are sufficient
to compute the unit vectors associated with the major ana@mnaixes of the error
ellipses. The inverse relations are easily obtained byhtpie appropriate dot-
products, producing

smajor . 4, Aminor 5
0 = tan™? ‘:naifl = —tan ' —2), (37)
ﬁa or. 5(1 pgﬁlnor " Qg
O = cos™H (T pa), (38)
and
¢21in0r — COS_l( Aaminor X ﬁa)- (39)

Let po denote the position on the celestial sphere where a tandgme 5 to be
erected. To minimize any distortion effects created wheppiray from the celes-
tial sphere onto the tangent plamgg,will be taken as the arithmetic mean of the
ellipse centerg,, i.e., 5

R aPa

oIS hl “o
A coordinate system may be given to the tangent plane witlotigen atp, and
orthonormal basis vecto#s, andé, parallel to the local lines of right ascension
and declination af, i.e.,

é, = Qo= —ITsinag+ g cosag 41

ey = 50 = —Z sin dy cos oy — ¥ sin dg sin g + 2 €os dy. (42)
Here, (v, o) are the celestial coordinates that correspongto
The tangent plane projection pfis defined by
Pt = o + 26, + yéy (43)

where(z, y) denote the tangent plane coordinates associatedpwiths a trivial
matter to show that = 1/( - py),

x=(p-é)/(P Po) (44)



and

y=(-¢)/(-po) (45)
It also follows from equation (43) that a poifit, y) in the tangent plane corre-
sponds to the unit vector

(46)

Note that the mapping from to (z,y) is non-linear. The source of the non-
linearity is the factorp - py, which represents the cosine of the angle betwgeen
andp,. Since this angle is expected to be small, exgl0 arc-minutes, the effects
of this term may be ignored:¢s 10’ ~ 1 — 4 x 10~%). Now consider two vectors
p1 andp, with an angle¢ between them such that - p, = cos&, and let their
tangent plane coordinates ba, y;) and(z,, y2), respectively. Then in the small
angle regime wherg - p, may be taken to be 1,

D1 — P2 = (x1 — x2)é1 + (Y1 — y2)é2 (47)

and

P1 — Dol = /(w1 — 22)2 + (1 — 12)° (48)
If the angle betweep; andp, is £, then

[p1 — P2| = v/2(1 — cos &)
\ (49)
=+ 0(87),

which shows that in the small angle regime, the arc-lengtivéen two celestial
coordinates is equal to the distance between the tangerd plajections of those
coordinates. This means that the arc-lengths of the senurraad minor axes
of the error ellipses will be preserved to sufficient accytayg the tangent plane
projection.

Armed with these relations, it is easy to compute the tangkamie projections of
the error ellipses. The tangent plane coordinate y,) of the center of theith
ellipse follows from equations (44) and (45), i.e.,

Lq = (ﬁa . ézv)/(pa . pO) (50)

and
Yo = (ﬁa : éy)/(ﬁa ']50)7 (51)
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wherep, is given by equation (31). Similar equations give the tahgeane
coordinates that correspond to the end-point positigff&" and p™°" of the
semi-major and semi-minor axes of the ellipse. Denotlng&ha)ordlnates as
(gmajor ymajor) gng (gminor 4minon) “the lengths of the semi-major and semi-minor
axes in the tangent plane are given by

o =\ (@ )2 4 ()2 (52)

and

0-1 — \/(xgﬂnor _ l‘a)Q + (ygwinor _ ya)Q’ (53)

respectively. Here, the symbols representing these lsrigthe been chosen to be
consistent with equation (25). As noted above, the lengthiseosemi-major and
minor-axes in the tangent plane should differ by a neglegdhount from those
of the celestial system, assuming the small angle apprdimaln contrast, the
angle that the semi-major axis makes with respect to the lmeaof declination
will differ between the two systems, particularly when tligee is located near
the poles of the celestial sphere. The angle as seen in therthplane is

major __

_ —1 'ra Ta

9; = tan (W) . (54)
Ya — Ya

From equations (52), (53), and (54), it is easy to show thairkerse relations
are

(x?ajor, y(rlnajo = (24 + oysinb,, y, + o cosb.), (55)
and , .
(a0 00 — (1, 4 00 o — oy sin ), (56)

and from these the corresponding unit vectors may be olatéimmeugh the use of
equation (46).

6 Summary

Equations (50), (51), (52), (53), and (54) constitute a $etquations that may
be used to map error ellipses from the celestial system owtwranon tangent
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plane, whose location is given by equation (40). Once ptefeto the tangent
plane, covariance matrices may be computed using equa&ngermitting the

error ellipses to combined via equation (24). This procesdyxces the geometric
parameters of a combined error ellipse on the tangent plEme mapping of the

error ellipse from the tangent plane back to the celestisiesy may be carried
out using equations (37), (38), (39), (46), (55), and (56).

The weighting procedure as proposed here for the problerarabming error el-
lipses is not new. Equation 22 appears to be the basis foringesgurce positions
for the 2MASS catalog as described in [1]. However, no mentibwhere this
equation comes from is given. This problem was also dealt bytOrechovesky
[2] in 1996 for military purposes involving geographic ldicas. His formalism
make use of Bayesian methods and Gaussian statistics.tjrefp@tion (22) can
be derived very simply by assuming a (multivariate) Gausgrabability distribu-
tion and demanding that the likelihood be a maximum. In @astfithe minimum-
variance derivation of equation (22) presented in sed¢tiomakes no reference to
Gaussian statistics, and as such may be of more generatyalid

A Appendix

This appendix contains provides the codeS$drang implementation of the algo-
rithm proposed in this memo. The program issish script that loads a data file
of input ellipses and writes out the combined result.

For example, consider the three input ellipses describedédifollowing data file:

# alpha delta semi-major semi-minor theta
# [deg] [deg] [arc-min] [arc-min] [deq]

30 71.6 50 24 18
29.2 717 23 16 27
30.3 723 a7 5 -56

Running theslsh script produces the following output for the combined eiéip
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60 — =

40 =

20+ -

Y [arc-min]

-60 - .
] 1 ] 1 ] ] 1 ] 1 ] 1 ] 1
-60 -40 -20 0 20 40 60

X [arc-min]

Figure 1:The input ellipses are shown in green and the resulting cosabellipse is in
red. Thex andy values represent tangent plane coordinates (arc-minutes)

alpha: 30.393881846278557 degrees
delta: 72.23672003826117 degrees
theta: 124.42667707460919 degrees
major: 12.945681354683803 arc-min (776.7408812810281 ar C-Sec)
minor: 4.855409627388941 arc-min (291.32457764333645 ar c-sec)

The input ellipses (green) and the combined ellipse (rezlshown in Figure 1.
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#!/usr/bin/env slsh
require (“readascii");

% This structure will be used to hold information about each e llipse
private variable Ellipse_Type = struct
{

alpha, delta, phi_major, phi_minor, theta_cel, % celestia
X, Yy, Sigma_major, sigma_minor, theta, % tangent plane
p_hat, alpha_hat, delta_hat, p_major, p_minor

h
private define dotprod (x, y)
{
return sum(x *y);
}
private define norm (x)
{
return sqrt (sum(x *X));
}
private define new_ellipse (alpha, delta, phi_major, phi_ minor, theta_cel)
{
variable e = @Ellipse_Type;
e.alpha = alpha;
e.delta = delta;
e.phi_major = phi_major;
e.phi_minor = phi_minor;
e.theta_cel = theta_cel;
variable ca=cos(alpha), cd=cos(delta), sa=sin(alpha), s d=sin(delta);
e.p_hat = [ca *cd, sa *cd, sd]; % eq 31
e.alpha_hat = [-sa, ca, O]; % eq 33
e.delta_hat = [-sd xca, -sd *sa, cd]; % eq 34
e.p_minor = e.p_hat  *cos(phi_minor)
+ e.alpha_hat *sin(phi_minor) * cos(theta_cel)
- e.delta_hat * sin(phi_minor) *sin(theta_cel); % eq 35
e.p_major = e.p_hat  *cos(phi_major)
+ e.alpha_hat =*sin(phi_major) * sin(theta_cel)
+ e.delta_hat  *sin(phi_major) *cos(theta_cel); % eq 36
return e;
}
private define get_tangent_plane_from_vector (p0)
{
variable alpha0 = atan2 (pO[1], pO[0]);% eq 32
variable delta0 = asin (pO[2]);
variable ex_hat = [-sin(alpha0), cos(alpha0), O]; % eq 41
variable ey_hat = [-sin(deltaO) * cos(alpha0),
-sin(delta0) *sin(alpha0), cos(delta0)]; % eq 42
return pO, ex_hat, ey_hat;
}
private define get_tangent_plane_from_ellipses (ellips es)
{

variable p0 = 0;
foreach (ellipses)

{
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}

variable e = ();
pO0 += e.p_hat;

pO /= norm (pO0);

%

return get_tangent_plane_from_vector (p0);

eq 40

private define project_ellipse (e, pO_hat, ex_hat, ey hat

}

variable p, p_dot_pO;

variable xa, ya, xa_major, xa_minor, ya_major, ya_minor;

p = e.p_hat;
p_dot_p0 = dotprod (p,
xa

ya
p = e.p_major;

p_dot_p0 = dotprod (p,
xa_major = dotprod (p,
ya_major = dotprod (p,

p = e.p_minor;

p_dot_p0 = dotprod (p,
xa_minor = dotprod (p,
ya_minor = dotprod (p,
e.x = xa;
ey =ya

pO_hat);

pO_hat);
ex_hat) / p_dot_pO;
ey _hat) / p_dot_pO;

p0_hat);
ex_hat) / p_dot_pO;
ey _hat) / p_dot_pO;

dotprod (p, ex_hat)/p_dot_p0; % eq 50
dotprod (p, ey_hat)/p_dot_pO; % eq 51

% eq 50
% eq 51
% eq 50
% eq 51

e.sigma_major = hypot (xa_major-xa, ya_major-ya); % eq 52
e.sigma_minor = hypot (xa_minor-xa, ya_minor-ya); % eq 53
e.theta = atan2 (xa_major-xa, ya_major-ya);

% eq 54

private define deproject_ellipse (e, p0, ex_hat, ey hat)

{

variable p = p0 + ex

xex_hat + ey =*ey hat;

p /= norm(p); %
e.p_hat = p;
e.alpha = atan2 (p[1], p[0)]); % eq

e.delta = asin (p[2]);

variable x_major =
variable y_major =

e.p_major = p/norm(p);

variable x_minor

e.x + e.sigma_major
ey + e.sigma_major
p = p0 + x_major *ex_hat + y _major

%

e.x + e.sigma_minor

variable y_minor = ey - e.sigma_minor

eq 46

32

* sin(e.theta);
* cos(e.theta);

*ey_hat;

eq 46

* cos(e.theta);
* sin(e.theta);

p = pO + x_minor *ex_hat + y_minor =*ey_ hat;
e.p_minor = p/norm(p); % eq 46
variable ca=cos(e.alpha), cd=cos(e.delta);

variable sa=sin(e.alpha), sd=sin(e.delta);

e.alpha_hat = [-sa, ca, 0]; % eq 33
e.delta_hat = [-sd xca, -sd *sa, cd]; % eq 34

14
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}

% Equations 37, 38, 39
e.theta_cel = atan (dotprod (e.p_major, e.alpha_hat)
| dotprod (e.p_major, e.delta_hat));
acos (dotprod (e.p_major, e.p_hat));
acos (dotprod (e.p_minor, e.p_hat));

e.phi_major
e.phi_minor

% Implements eq 27
private define ellipse_to_correlation_matrix (e)

{

}

variable sigy2 = e.sigma_major'2, sigx2 = e.sigma_minor-2
variable ¢ = cos(e.theta);

variable s = sin(e.theta);

variable c2 = ¢ *c, s2 = s *s5;

variable sx2 = sigx2 *C2 + sigy2 =*s2;
variable sy2 = sigx2 *s2 + sigy2 *c2;
variable rho_sxsy = ¢ * S* (Sigy2-sigx2);

return _reshape ([sx2, rho_sxsy, rho_sxsy, sy2], [2,2]);

% Implements equations 28, 29, 30
private define correlation_matrix_to_ellipse (matrix, x

{

}

variable sx2 = matrix[0,0];

variable sy2 = matrix[1,1];

variable rho2_sxsy = 2 * matrix[0,1];
variable sum = sy2+sx2;

variable diff = sy2-sx2;

variable e = @Ellipse_Type;

ex = x0, ey = y0;

e.theta = 0.5 =*atan2 (rho2_sxsy, diff);
diff = hypot (diff, rho2_sxsy);

e.sigma_major = sqrt (0.5 *(sum + diff));
e.sigma_minor = sqrt (0.5 *(sum - diff));
return e;

private define inverse_2x2 (a)

{

}

variable det = a[0,0] * a[1,1] - a[0,1] *a[1,0];
if (det == 0.0)

throw RunTimeError, "matrix is singular";
variable al = Double_Type[2,2];

al[0,0] = a[1,1];
al[0,1] = -a[0,1];
al[1,0] = -a[1,0];

al[1,1] = a[0,0];
return al/det;

% Implememts eq 24
private define combine_ellipses_internal (es)

{

variable num = length(es);
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}

variable Cinv = 0;

variable mu = 0;

_for (0, num-1, 1)

{

variable i = ();
variable e = eg]i];
variable C_m = ellipse_to_correlation_matrix (e);
variable Cinv_m = inverse_2x2 (C_m);
mu += Cinv_m # [e.x, e.y];
Cinv += Cinv_m;

variable C = inverse_2x2 (Cinv);
mu = C # mu;
return correlation_matrix_to_ellipse (C, mu[0], mu[1]);

% alpha, delta, theta are in degrees, phi_major/minor are ar
define combine_ellipses (alphas, deltas, phimajors, phim

{

}

% convert to radians

variable rad_per_deg = PI/180.0;
alphas *= rad_per_deg;

deltas *= rad_per_deg;
phimajors  *= rad_per_deg/60.0;
phiminors  *= rad_per_deg/60.0;
thetas *= rad_per_deg;

variable i, e, ellipses = {};
_for i (0, length(thetas)-1, 1)

e = new_ellipse (alphas]i], deltas[i], phimajors]i],
phiminors[i], thetasli]);
list_append (ellipses, e);

}

variable p0, ex_hat, ey_hat;
(PO, ex_hat, ey hat) = get_tangent_plane_from_ellipses (

foreach e (ellipses)
project_ellipse (e, p0, ex_hat, ey hat);

variable new_e = combine_ellipses_internal (ellipses);
deproject_ellipse (new_e, p0, ex_hat, ey_hat);

return
new_e.alpha/rad_per_deg,
new_e.delta/rad_per_deg,
new_e.phi_major/rad_per_deg *60.0,
new_e.phi_minor/rad_per_deg *60.0,
new_e.theta/rad_per_deg;

define slsh_main ()

{

variable alphas, deltas, phimajors, phiminors, thetas;
variable use_arc_secs = 0;
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if (_argc = 2)

() = fprintf (stderr, "Usage: %s ellipse.dat\n”, __ argv[0]
exit (1);
}
variable infile = __ argv[1];
() = readascii (infile, &alphas, &deltas, &phimajors, &phi
type="%If");

if (use_arc_secs)

{
}

phiminors/=60.0; phimajors/=60.0;

variable alpha, delta, phimajor, phiminor, theta;

(alpha, delta, phimajor, phiminor, theta)
= combine_ellipses (alphas, deltas, phimajors, phiminors

theta = (theta+180.0) mod 180.0;

() = fprintf (stdout, "alpha: %18S degrees\n", alpha);

() = fprintf (stdout, "delta: %18S degrees\n", delta);

() = fprintf (stdout, "theta: %18S degrees\n", theta);

() = fprintf (stdout, "major: %18S arc-min (%S arc-sec)\n",
() = fprintf (stdout, "minor: %18S arc-min (%S arc-sec)\n",
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