AGN heating in the *HIFLUGCS* sample of galaxy clusters: A self-regulated feedback mechanism?

Rupal Mittal, Daniel Hudson and Thomas Reiprich

Collaborators: Heinz Andernach (U. Mexico), Tracy Clarke (NRL) and Paul Nulsen (CfA)

Emmy Noether Research Group

Are there any indications of cooling?

- Steep surface brightness profiles
- 2 Cooling times, $\tau \sim n^{-1} T^{0.5} \lesssim H_0$.

AGN heating in galaxy clusters

- Mechanical heating by expanding cavities: sound waves, turbulence, weak shock waves (e.g. Mathews et al. 2006, Voit & Donahue 2005, Brüggen et al. 2005, Birzan et al. 2004).
- AGN induced Convection (e.g. Chandran et al. 2007).
- AGN induced Cosmic Ray Heating (e.g. Guo et al. 2007).
- AGN induced Compton heating / photoionization (e.g. Sazonov et al. 2005).
- AGN + Conduction [e.g. Voit et. al. 2008 (see also Soker arXiv:0806.4720v1), Guo et al. 2008].

Our Sample

HIFLUGCS - The 64 brightest galaxy clusters

- Based on the ROSAT All Sky Survey, $|b| > 20^{\circ}$.
- $f_{\rm X}(0.1-2.4)~{\rm keV}\gtrsim 2\times 10^{-11}~{\rm ergs/sec/cm^2}.$
- $\langle z
 angle \sim$ 0.05 ; $z_{
 m max} =$ 0.21
- All have observations with *Chandra* and all but one with *XMM-Newton*.
- All have radio observations. Measurements for our study taken either from literature or archives.
 - 65 % have data below 500 MHz
 - 46 % have data below 80 MHz

Separation between X-ray peak and BCG

Spectral of CCRSs in the HIFLUGCS sample

Spectral breaks as indicative of cavity ages

(See Birzan arXiv:0806.1929)

Spectral Luminosity vs. Total Radio Luminosity

Cooling activity - is there a good measure?

Search for bi(tri)modality

- Central surface brightness
- Scaled core radius, *r*_c/*R*₅₀₀
- Central density, n₀
- Central biased entropy, K_{bias}
- Cooling radius, rcool
- $\dot{M}_{\rm spec}/M_{500}$
- Scaled core luminosity $[L_X/(M_{gas}kT_{vir})]$
- $M_{\rm gas}(< 0.048 R_{500})/M_{500}$

Central $\rightarrow 0.4\% R_{500}$.

- Central cooling time
- Central entropy, K_0
- Central temperature drop (T₀/T_{vir})
- Cuspiness (α)

Classical Mass Deposition Rate

Central Cooling Time

Peculiarities at Central Cooling Time < 1 Gyr

Central Temperature Drop

Cuspiness

SCC, WCC and NCC fractions: With and without a CRS

X-ray - Radio correlation

Mass of the SMBH vs. radio luminosity of the BCG

$$\log_{10}\left(\frac{M_{BH}}{M_{\odot}}\right) = 8.21 + 1.13 \left[\log_{10}\left(\frac{L_{k,bul}}{L_{\odot}}\right) - 10.9\right] \rightarrow \text{Marconi \& Hunt (2003)}$$

$$\frac{L_{\rm R}}{10^{42} \ h_{71}^{-2} \ {\rm ergs} \ {\rm s}^{-1}} = (0.004 \pm 0.002) \times \ \left(\frac{M_{\rm BH}}{10^9 \ {\rm M}_{\odot}}\right)^{3.39 \pm 0.4}$$

Rupal Mittal (AlfA, Bonn)

AGN heating in the HIFLUGCS sample

Conclusions & Outlook

- The integrated radio luminosity (L_R) of a CCRS is tightly correlated to its 1.4 GHz luminosity but there are exceptions; L_R is better-suited for such a study.
- Based on t_{cool}, there is an increasing probability for the BCG closest to the X-ray peak to harbor an active AGN with decreasing cooling time.

• SCC,
$$t_{\rm cool} \leq$$
 1 Gyr \rightarrow 100 %

- WCC, 1 Gyr $\leq t_{cool} \leq$ 7.7 Gyr \rightarrow 67 %
- NCC, $t_{\rm cool} \ge 7.7 \; {\rm Gyr} \rightarrow 45 \; \%$
- Oupling between radio and cooling activity seen in SCC clusters:
 - L_R scales with the cluster size (e.g. L_X) for SCC clusters.
 - $L_{\rm R}$ shows a tight correlation with $\dot{M}_{\rm classical}$ for CC clusters.
 - $L_{\rm R}$ of the BCG increases with $M_{\rm BH}$ in SCC clusters.

Upcoming Papers

- What is a Cool Core Cluster? A Detailed Analysis of the Cores of the HIFLUGCS Clusters"
 - D. S. Hudson, R. Mittal, T. H. Reiprich, P. E. J. Nulsen, H. Andernach & C. L. Sarazin
- AGN-heating and ICM cooling in the HIFLUGCS sample of galaxy clusters"
 - R. Mittal, D. S. Hudson & T. H. Reiprich

Central Cooling Time

Outliers

BCG and large-scale environment

AGN heating in the HIFLUGCS sample

BCG K-band Bulge Luminosity vs Central Temperature

