
Introduction to the Sherpa S−Lang Module

Sherpa Threads (CIAO 3.4)

Sherpa S−Lang Module − Sherpa

Introduction to the Sherpa S−Lang Module 1

Table of Contents
Introduction•
Fitting a PHA Spectrum

Loading Data and Responses♦
Filtering Data and Subtracting Background♦
Defining a Source Model♦
Fitting♦
Examining Fit Results♦
Scripting the Procedure♦

•

Fitting and Plotting ASCII Data with Errors
Loading Data and Errors♦
Plotting the Data♦
Defining a Source Model and Fitting♦
Plotting the Fit♦
Expanding the Possibilities with a Script♦

•

A Note on sherpa_eval•
History•
Images

Plot of data retrieved by "get" functions♦
Plot of data and fit retrieved by "get" functions♦
Plot created by "polyfit.sl"♦

•

Sherpa S−Lang Module − Sherpa

2 Table of Contents

URL: http://cxc.harvard.edu/sherpa/threads/module_intro/ Last modified: 1 Dec 2006

Introduction to the Sherpa S−Lang Module
Sherpa Threads

Overview

Last Update: 1 Dec 2006 − reviewed for CIAO 3.4: no changes

Synopsis:

The Sherpa S−Lang module is an extension to Sherpa that allows one to employ its full capabilities from
within a S−Lang script or another S−Lang−enabled application (such as ChIPS). This thread provides an
introduction to the module via some example applications.

Read this thread if:

You want to be able to customize and extend Sherpa via S−Lang functions and scripts or use Sherpa's
functionality in another S−Lang−enabled application.

Related Links:

The sherpa−module ahelp page•
Sherpa and Scripts•
Accessing fit results using S−Lang•
A Guide to the S−Lang Language•

Proceed to the HTML or hardcopy (PDF: A4 | letter) version of the thread.

Introduction

The Sherpa S−Lang module allows the user to employ Sherpa's full functionality from within a S−Lang script
or another S−Lang−enabled application (such as ChIPS). This permits one to enhance other applications with
Sherpa's features and (more importantly) to extend the capabilties of Sherpa beyond its design without
altering Sherpa itself. Hence, the Sherpa S−Lang module lets the user break free of the "black box" model and
enhance Sherpa to meet his or her specific needs.

This thread introduces the Sherpa S−Lang module by guiding the user through some basic examples of its
use. It also provides example scripts that users may download and modify to suit their own needs. For more
examples of scripts that use the Sherpa module, see the Sherpa section of the CIAO scripts page. For an
introduction to the S−Lang programming language, see A Guide to the S−Lang Language.

The Sherpa S−Lang module is available automatically within a Sherpa session and in scripts run by the
sherpa executable. To use the module in external applications, one must load it using the import function.
For example, within ChIPS:

Sherpa S−Lang Module − Sherpa

Introduction to the Sherpa S−Lang Module 3

http://cxc.harvard.edu/sherpa/threads/module_intro/
http://www.jedsoft.org/slang/doc/html/slang.html
http://www.jedsoft.org/slang/doc/html/slang.html

chips> import("sherpa")

Or, within an slsh script:

unix% more myscript
#!/usr/bin/env slsh

import("sherpa");
...

For more information on driving Sherpa with S−Lang scripts, see the Sherpa and Scripts thread.

Fitting a PHA Spectrum

As our first example, we will perform a basic fit to a PHA spectrum. The data and procedure are identical to
those used in the Introduction to Fitting PHA Spectra thread. However, we will perform the fit using only
functions from the Sherpa S−Lang module.

Loading Data and Responses

To begin, we load the spectrum file using load_dataset:

sherpa> load_dataset("3c273.pi")
1

Notice that "1" was printed to the screen. This is the return value of the function; "1" indicates success, while
"0" would indicate failure (e.g. if the file did not exist). In scripts, you should usually check a function's return
value, as a failure condition generally means that a script must abort or enter an error−handling mode. Here,
we will simply discard return values using the syntax "() = ...". For example, we could have discarded
the "1" returned by load_dataset as follows:

sherpa> () = load_dataset("3c273.pi")

Note that the type and meaning of return values differ between functions, and some functions return nothing at
all. For more information on return values for a particular function, see the function's ahelp file.

Since header keywords in the file 3c273.pi specify associated RMF, ARF, and background files,
load_dataset automatically loads these files and establishes an appropriate instrument model. We can
verify this by issuing the SHOW command:

sherpa> SHOW

Optimization Method: Levenberg−Marquardt
Statistic: Chi−Squared Gehrels

−−−−−−−−−−−−−−−−−
Input data files:
−−−−−−−−−−−−−−−−−

Data 1: /data/sherpa/pha_intro/3c273.pi.
Total Size: 46 bins (or pixels)
Dimensions: 1
Total counts (or values): 736
Exposure: 38564.61 sec
Count rate: 0.019 cts/sec
 Backscal: 2.526436e−06

 Background 1: /data/sherpa/pha_intro/3c273_bg.pi.
 Total Size: 1024 bins (or pixels)

Sherpa S−Lang Module − Sherpa

4 Fitting a PHA Spectrum

 Dimensions: 1
 Total counts (or values): 216
 Exposure: 38564.61 sec
 Count rate: 0.006 cts/sec
 Backscal: 1.872535e−05

 The data are NOT background subtracted.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Defined analysis model stacks:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

instrument source 1 = respo2
instrument back 1 = respo2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Defined instrument model components:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rsp1d[respo2]
 Param Type Value Min Max Units
 −−−−− −−−− −−−−− −−− −−− −−−−−
 1 rmf string: "3c273.rmf" (N_E=1090,N_PHA=1024)
 2 arf string: "3c273.arf" (N_E=1090)

Filtering Data and Subtracting Background

Next, we establish an energy filter (selecting energies in the range 0.1−6.0 keV) using the set_notice
function and subtract the background data using set_subtract:

sherpa> () = set_notice(,0.1,6.0)
sherpa> () = set_subtract

Note that in the set_notice call, a comma appears before 0.1. This is necessary because set_notice
actually takes three parameters: dataset number, lower bound, and upper bound. If the first parameter is empty
(as above), the dataset number defaults to 1.

Defining a Source Model

To establish a source model, we use the function set_source_expr:

sherpa> () = set_source_expr("xsphabs[abs]*powlaw1d[p1]")

This creates the specified source model using the default parameter values for each model component. Note
that set_source_expr does not prompt for parameter values, regardless of the setting of PARAMPROMPT.

Next, we set the hydrogen column density in the abs model component (with set_par) and freeze the
component (with set_frozen):

sherpa> () = set_par("abs.nh","value",0.07)
sherpa> () = set_frozen("abs")

We can verify that the source model has indeed been established using SHOW:

sherpa> SHOW source
(abs * p1)
xsphabs[abs] (XSPEC model name: phabs) (integrate: off)
 Param Type Value Min Max Units
 −−−−− −−−− −−−−− −−− −−− −−−−−
 1 nH frozen 7e−02 1e−07 10 10**22 atoms/cm**2
powlaw1d[p1] (integrate: on)

Sherpa S−Lang Module − Sherpa

Filtering Data and Subtracting Background 5

 Param Type Value Min Max Units
 −−−−− −−−− −−−−− −−− −−− −−−−−
 1 gamma thawed 1 −10 10
 2 ref frozen 1 0.1248 5.9057
 3 ampl thawed 7.9256e−06 7.9256e−08 7.9256e−04

Fitting

We now fit the model using the function run_fit:

sherpa> good = run_fit
 LVMQT: V2.0
 LVMQT: initial statistic value = 355.854
 LVMQT: final statistic value = 37.9079 at iteration 10
 p1.gamma 2.1585
 p1.ampl 0.000224838

Examining Fit Results

After performing the fit, run_fit calls get_goodness, which returns a S−Lang structure that contains
information about the quality of the fit. We have stored this structure in a S−Lang variable named good (the
name is arbitrary) and can display its contents using the Varmm function print:

sherpa> print(good)
dataset = 1
datatype = source
stat = 37.9079
numbins = 44
dof = 42
rstat = 0.902569
qval = 0.651155

We can also access individual fields of the good structure using the syntax
<structname>.<fieldname>. For example, we can store the statistic value in a S−Lang variable named
statval and save it for future use:

sherpa> statval = good.stat
sherpa> print(statval)
37.9079

Since run_fit returns goodness−of−fit information automatically, there is no need to issue the GOODNESS
command. For more information on using fit results, see the thread "Accessing fit results using S−Lang".

We can obtain confidence intervals for our model parameters using run_cov, the S−Lang equivalent of the
COVARIANCE command:

sherpa> conf = run_cov

Computed for sherpa.cov.sigma = 1
 −−
 Parameter Name Best−Fit Lower Bound Upper Bound
 −−
 p1.gamma 2.1585 −0.0827851 +0.0827851
 p1.ampl 0.000224838 −1.48256e−05 +1.48256e−05

run_cov returns an array of structures, which we have stored in the variable conf. Each element of the
array contains the confidence interval for one parameter, which we can display using print:

sherpa> print(conf[0])
name = p1.gamma

Sherpa S−Lang Module − Sherpa

6 Fitting

val = 2.1585
vlo = 2.07571
vhi = 2.24128
sigma = 1
sherpa> print(conf[1])
name = p1.ampl
val = 0.000224838
vlo = 0.000210012
vhi = 0.000239663
sigma = 1

Scripting the Procedure

Although it is entirely valid to use Sherpa module functions from the Sherpa command line (as we have done
so far in this thread), they provide few advantages over traditional Sherpa commands during interactive use.
The real benefit of the Sherpa S−Lang module is that it allows one to harness the full capabilities of Sherpa
from within a S−Lang script.

The S−Lang script phafit.sl contains all the commands used above to fit our example spectrum:

unix% more phafit.sl
() = load_dataset("3c273.pi");
() = set_notice(,0.1,6.0);
() = set_subtract();
() = set_source_expr("xsphabs[abs]*powlaw1d[p1]");
() = set_par("abs.nh","value",0.07);
() = set_frozen("abs");
variable good = run_fit();
variable conf = run_cov();

Note that within a S−Lang script, each statement must end with a semi−colon, and variables must be declared
(via the variable keyword) before use. (These requirements, which are a standard part of the S−Lang
language, are relaxed at the Sherpa command line.)

To run this script from the Sherpa command line, use the evalfile function. Note that if you are still
working in the same Sherpa session as above, you will have to start a new session or issue the command
"ERASE ALL" before running the script:

sherpa> () = evalfile("phafit.sl")

For more information on running S−Lang scripts, see the Sherpa and Scripts thread.

Fitting and Plotting ASCII Data with Errors

As our second example, we will demonstrate more of the Sherpa module's set and get functions by
reproducing part of the Introduction to Fitting ASCII Data with Errors thread. Then, we will show how the
Sherpa module can be used to extend the capabilities of Sherpa by providing a S−Lang script that displays
three different fits to a dataset on a single plot.

Loading Data and Errors

The ASCII data file we want to use contains three columns. The first is the independent variable (x), the
second is the depedent variable (y), and the third is error in the dependent variable (yerr):

unix% more data1.dat
0.5 1.6454 0.04114

Sherpa S−Lang Module − Sherpa

Scripting the Procedure 7

1.5 1.7236 0.04114
2.5 1.9472 0.04114
3.5 2.2348 0.04114
...

None of the Sherpa module's load functions can handle a file in this format, so we will have to use set
functions to load the data.

First, we read in the file using the Varmm function readfile:

sherpa> dat = readfile("data1.dat")

readfile returns a S−Lang structure that holds both "metadata" about the file (e.g. file name and format)
and arrays containing the actual data columns:

sherpa> print(dat)
_filename = data1.dat
_path = /data/sherpa/basic/
_filter = NULL
_filetype = 1
_header = NULL
_ncols = 3
_nrows = 11
col1 = Float_Type[11]
col2 = Float_Type[11]
col3 = Float_Type[11]

For ASCII files, the column array names correspond to the order in which the columns appear in the file
(col1 is the first column, col2 is the second column, etc.). We can examine the contents of a column array
using the print function:

sherpa> print(dat.col1)
0.5
1.5
2.5
3.5
...

It is also possible to select and use individual array elements using the syntax <arrayname>[<index>].
Since S−Lang array indices start at zero, we can print the third element of the col1 array as follows:

sherpa> print(dat.col1[2])
2.5

We now have to load the data arrays into Sherpa. To do this, we use three functions: set_axes to load the
independent−variable column, set_data to load the dependent−variable column, and set_errors to
load the errors:

sherpa> () = set_axes(dat.col1)
sherpa> () = set_data(dat.col2)
sherpa> () = set_errors(dat.col3)

To confirm that the data have been loaded, we can issue the SHOW command:

sherpa> SHOW
...
−−−−−−−−−−−−−−−−−
Input data files:
−−−−−−−−−−−−−−−−−

dataset 1 loaded via S−Lang module

Sherpa S−Lang Module − Sherpa

8 Scripting the Procedure

Plotting the Data

We now want to plot the data. The simplest way to do this using a Sherpa module function is to call the
LPLOT command via sherpa_eval:

sherpa> () = sherpa_eval("LPLOT DATA")

However, a more flexible and potentially powerful approach is to use get functions to obtain the data and the
curve function to plot it. First, we obtain the dataspace, data, and errors using get_axes, get_data, and
get_errors, respectively:

sherpa> x = get_axes
sherpa> y = get_data
sherpa> y_err = get_errors

get_data and get_errors return simple arrays containing the relevant data. However, get_axes
returns a structure:

sherpa> print(x)
axistype = Channels
axisunits = bin
lo = NULL
hi = NULL
mid = Double_Type[11]

If we were using binned data (e.g. from a PHA spectrum), the mid field would be NULL, and the lo and hi
fields would be arrays containing the lower and upper boundaries, respectively, for each bin. However, since
we are using unbinned data, lo and hi are NULL, and mid is an array containing the independent−axis
gridpoints. Since this array is all we want, we store it in the variable x, overwriting the structure returned by
get_axes:

sherpa> x = x.mid

We are now ready to plot the data. To do this, we use three functions from the ChIPS S−Lang module:
chips_clear to clear the plot window, curve to plot the curve, and chips_redraw to draw the plot:

sherpa> chips_clear
sherpa> () = curve(x,y,y_err)
sherpa> chips_redraw

The resulting plot shows the datapoints and error bars. Although it is possible to customize the output of
curve using the ChIPS state object, for now we accept the defaults.

Defining a Source Model and Fitting

Next, we define our source model and fit the data. This time, we will create the desired model component first
using create_model and then make it our source model using set_source_expr:

sherpa> () = create_model("polynom1d","model1")
sherpa> () = set_source_expr("model1")

Then, we thaw the c1 parameter (first−order coefficient in our polynomial) and fit, discarding the
goodness−of−fit information that run_fit returns:

sherpa> () = set_thawed("model1.c1")
sherpa> () = run_fit
 LVMQT: V2.0
 LVMQT: initial statistic value = 2815.14
 LVMQT: final statistic value = 151.827 at iteration 5
 model1.c0 1.58227
 model1.c1 0.198455

Sherpa S−Lang Module − Sherpa

Plotting the Data 9

Plotting the Fit

Finally, we wish to plot the resulting fit. First, we retrieve the data to plot using the get_mcounts function,
which returns an array containing the y−values of the predicted data (i.e. an evaluation of the source model at
every point on the independent axis):

sherpa> y = get_mcounts

Next, we customize the plot by setting the appropriate fields in the ChIPS state object. We choose to connect
the data points with a simple, red line and remove the symbols marking individual datapoints:

sherpa> chips.curvestyle = _chips−>simpleline
sherpa> chips.curvecolor = _chips−>red
sherpa> chips.symbolstyle = _chips−>none

Finally, we plot the curve and redraw the plot window:

sherpa> () = curve(x,y)
sherpa> chips_redraw

As expected, the plot window now displays both the original data and the red best−fit line corresponding
to our linear source model.

Expanding the Possibilities with a Script

Although the plotting techniques described in the above sections are effective, Sherpa provides much simpler
ways to create basic plots. For example, since the sherpa_eval function processes strings as if they were
entered at the Sherpa command line, the easiest way to plot the above fit is to call the LPLOT command:

sherpa> () = sherpa_eval("LPLOT FIT")

However, the methods we have discussed enable us to perform more complicated tasks that are not possible
with the standard Sherpa command set. Herein lies the real value of the Sherpa S−Lang module: It allows the
user to extend Sherpa's functionality as needed, without having to alter Sherpa itself.

The S−Lang script polyfit.sl provides a simple example of such an extension. Building on the methods
used in this section, it performs three fits to the example dataset (using polynomials of order 1, 2, and 3) and
plots the data and fits in a single pane, using a different color for each fit. The script uses two functions we
have not yet discussed: chips_color_value, which takes a color name (e.g. "red") and returns the
numeric value associated with that color (in this case, 6), and chips_label, which draws a label on the
plot window:

unix% more polyfit.sl
% Load ASCII data and errors
variable dat = readfile("data1.dat");
() = set_axes(dat.col1);
() = set_data(dat.col2);
() = set_errors(dat.col3);

% Plot data and errors
variable x = get_axes().mid;
variable y = get_data();
variable y_err = get_errors();
chips_clear();
() = curve(x,y,y_err);

% Create source model
() = create_model("polynom1d","model1");
() = set_source_expr("model1");

Sherpa S−Lang Module − Sherpa

10 Plotting the Fit

% Make future curves simple lines without markers
% for individual data points
chips.curvestyle = _chips−>simpleline;
chips.symbolstyle = _chips−>none;

% Create array containing names of colors for fit plots
variable colors = ["red", "green", "yellow"];

% Store initial polynomial order
variable i = 1;

% Run fits for orders 1, 2, and 3 polynomials, and
% plot each fit in a different color

loop (3) {
 % Thaw coefficient for order i
 () = set_thawed("model1.c" + string(i));

 % Fit to order i polynomial
 () = run_fit();

 % Plot fit results, using color specified by element
 % i−1 of "colors" array
 y = get_mcounts();
 chips.curvecolor = chips_color_value(colors[i−1]);
 () = curve(x,y);

 % Add a label for this fit, in the same color as the fit
 % curve
 () = chips_label(1.0, (3.6 − 0.15*i), "Order " + string(i),
 chips.curvecolor, 1.5);

 % Use order i+1 polynomial in next iteration
 i++;
}

% Draw the plot
chips_redraw();

You can run the script as follows (after starting a new session or issuing the command "ERASE ALL"):

sherpa> () = evalfile("polyfit.sl")
 LVMQT: V2.0
 LVMQT: initial statistic value = 2815.14
 LVMQT: final statistic value = 151.827 at iteration 5
 model1.c0 1.58227
 model1.c1 0.198455

 LVMQT: V2.0
 LVMQT: initial statistic value = 151.827
 LVMQT: final statistic value = 59.0027 at iteration 4
 model1.c0 1.30826
 model1.c1 0.347303
 model1.c2 −0.0135317

 LVMQT: V2.0
 LVMQT: initial statistic value = 59.0027
 LVMQT: final statistic value = 30.8491 at iteration 5
 model1.c0 1.49843
 model1.c1 0.1447
 model1.c2 0.0322936
 model1.c3 −0.00277729

The plot created shows the data, the three fit curves, and three labels whose colors match the
corresponding curves. Although this is a relatively simple application of the Sherpa module, it would not be
possible using only standard Sherpa commands.

Sherpa S−Lang Module − Sherpa

Plotting the Fit 11

A Note on sherpa_eval

The function sherpa_eval, which is part of the Sherpa S−Lang module, can be very useful in S−Lang
scripts. It takes a string as its argument and interprets the string as a Sherpa command entered at the Sherpa
prompt. This allows an application or script that imports the Sherpa module to execute any Sherpa command,
regardless of whether it has a S−Lang equivalent.

However, when a Sherpa command does have a S−Lang equivalent, it is almost always preferrable to use the
S−Lang version, rather than passing the command string to sherpa_eval. In addition to being more
efficient, Sherpa S−Lang functions generally provide S−Lang−scope output data (e.g. fit results) that are
impossible to obtain when using sherpa_eval.

Also, note that sherpa_eval differs from the actual Sherpa command line in that one may execute only
Sherpa commands, not ChIPS commands or S−Lang statements. To execute a ChIPS command in a S−Lang
script, use chips_eval.

History

14 Jan 2005reviewed for CIAO 3.2: no changes

21 Dec 2005reviewed for CIAO 3.3: no changes

01 Dec 2006reviewed for CIAO 3.4: no changes

URL: http://cxc.harvard.edu/sherpa/threads/module_intro/ Last modified: 1 Dec 2006

Sherpa S−Lang Module − Sherpa

12 A Note on sherpa_eval

http://cxc.harvard.edu/sherpa/threads/module_intro/

Image 1: Plot of data retrieved by "get" functions

Sherpa S−Lang Module − Sherpa

Image 1: Plot of data retrieved by "get" functions 13

Image 2: Plot of data and fit retrieved by "get" functions

Sherpa S−Lang Module − Sherpa

14 Image 2: Plot of data and fit retrieved by "get" functions

Image 3: Plot created by "polyfit.sl"

Sherpa S−Lang Module − Sherpa

Image 3: Plot created by "polyfit.sl" 15

Sherpa S−Lang Module − Sherpa

16 Image 3: Plot created by "polyfit.sl"

