
Sherpa Configuration: Using the State Objects

Sherpa Threads (CIAO 3.4)

Sherpa Configuration − Sherpa

Sherpa Configuration: Using the State Objects 1

Table of Contents
State Object Basics•
Changing the Appearance of Plots

Choosing Linear or Logarithmic Scales♦
Controlling Display of Error Bars♦
Advanced Customization with Function Hooks♦
Modifying Existing Plots♦

•

Configuring Confidence−Level Calculations
Displaying the Current Settings♦
Restoring the Default Settings♦

•

Other Configuration Options
Floating−Point Output♦
Controlling Contour Levels♦
Model Overriding♦
Multiple Backgrounds Per Dataset♦
Deleting ds9 Frames♦
File Overwriting♦

•

Saving and Restoring State Object Settings•
Creating Aliases for State Objects•
History•

Sherpa Configuration − Sherpa

2 Table of Contents

URL: http://cxc.harvard.edu/sherpa/threads/state_objects/ Last modified: 1 Dec 2006

Sherpa Configuration: Using the State Objects
Sherpa Threads

Overview

Last Update: 1 Dec 2006 − reviewed for CIAO 3.4: no changes

Synopsis:

The configuration of many aspects of Sherpa is controlled by state objects (a.k.a. configuration variables).
This thread introduces the state objects and describes how they can be used to customize various features of
Sherpa.

Related Links:

The state objects section of the Sherpa ahelp page•
The ahelp pages for individual state objects: sherpa.plot, sherpa.dataplot,
sherpa.fitplot, sherpa.resplot, sherpa.multiplot, sherpa.output,
sherpa.regproj, sherpa.regunc, sherpa.intproj, sherpa.intunc,
sherpa.proj, sherpa.cov, sherpa.unc

•

For details on configuring plots:
Step−by−Step guide to changing the look of Sherpa plots♦
Advanced customization of Sherpa plots♦

•

For details on configuring confidence−level calculations: Step−by−Step Guide to Estimating Errors
and Confidence Levels

•

Proceed to the HTML or hardcopy (PDF: A4 | letter) version of the thread.

State Object Basics

The Sherpa state object (a.k.a. configuration variable) is a S−Lang variable that is initialized whenever one
starts a Sherpa session or loads the Sherpa S−Lang module. The contents of the state object can be displayed
with the print function:

sherpa> print(sherpa)
plot = sherpa_Plot_State
dataplot = sherpa_Plot_State
fitplot = sherpa_FitPlot_State
resplot = sherpa_Plot_State
multiplot = sherpa_Draw_State
output = sherpa_Output_State
regproj = sherpa_VisParEst_State
regunc = sherpa_VisParEst_State
intproj = sherpa_VisParEst_State
intunc = sherpa_VisParEst_State

Sherpa Configuration − Sherpa

Sherpa Configuration: Using the State Objects 3

http://cxc.harvard.edu/sherpa/threads/state_objects/

proj = sherpa_Proj_State
cov = sherpa_Cov_State
unc = sherpa_Unc_State
con_levs = NULL
modeloverride = 0
multiback = 0
deleteframes = 1
clobber = 0

The column to the left of the equals signs (=) contains the names of the state object's fields, and the column to
the right contains the fields' values. Some of the state object's fields (e.g. multiback) contain simple,
atomic values, such as integers or strings; the values of these fields appear in the output of
print(sherpa). Others fields (i.e. plot and those whose values are of the form sherpa_..._State)
are state objects themselves, which contain fields of their own. To display the contents of these state objects,
use the syntax print(sherpa.<name>), as shown below for sherpa.plot.

You can select a specific field of a state object using the dot (.) operator:

sherpa> print(sherpa.modeloverride)
0
sherpa> print(sherpa.plot)
x_errorbars = 0
y_errorbars = 0
errs_style = bar
errs_type = both
...
sherpa> print(sherpa.plot.errs_style)
bar

Each atomic field is a S−Lang variable and can be set using the syntax "<name> = <value>". For
example, the following commands set sherpa.modeloverride to 1 and
sherpa.plot.errs_style to "standard":

sherpa> sherpa.modeloverride = 1
sherpa> sherpa.plot.errs_style = "standard"

Note that string values must be enclosed in double quotes. The reason is that S−Lang interprets "standard"
(with quotes) as a literal string, whereas standard (without quotes) is a variable name.

The sections that follow introduce the state object fields and explain how they affect various features of
Sherpa. For more detailed information, see the "Related Links" section of the Overview.

Note that the state object concept is not unique to Sherpa. For example, both Varmm and ChIPS have state
objects of their own. Since Sherpa uses Varmm and ChIPS, these state objects are also available within a
Sherpa session.

Changing the Appearance of Plots

Five Sherpa state objects control the appearance of plots. The following table lists these state objects and the
plot types that they control:

State object Plot types

sherpa.plot
The output of LPLOT, OPLOT, CPLOT, and SPLOT for all plots except data, fit, and
residual plots

sherpa.dataplot Data plots (LPLOT DATA and LPLOT BACK)

sherpa.fitplot Fit plots (LPLOT FIT and LPLOT BFIT)

Sherpa Configuration − Sherpa

4 Changing the Appearance of Plots

sherpa.resplot
Residual plots (LPLOT RESIDUALS, LPLOT RATIO, LPLOT BRESIDUALS,
and LPLOT BRATIO)

sherpa.multiplot All plots

The ahelp files for the individual state objects describe their fields and the plotting options that they control.
For more information on configuring plots via the state objects, see the thread "Step−by−Step guide to
changing the look of Sherpa plots". For information on how to use the setplot.sl script to simplify plot
configuration, see the thread "Changing the look of Sherpa plots using setplot.sl".

Choosing Linear or Logarithmic Scales

One commonly−used plot configuration option is to change from linear to logarithmic axes (or vice versa).
The state objects sherpa.plot, sherpa.dataplot, sherpa.fitplot, and sherpa.resplot
contain the fields x_log and y_log, which control the axis scales. For example, to produce data plots with a
linear x axis and logarithmic y axis, you would set these fields as follows:

sherpa> sherpa.dataplot.x_log = 0
sherpa> sherpa.dataplot.y_log = 1

However, Sherpa also provides convenience functions that allow you to change the axis scales for all plots at
once. The functions set_xlog, set_ylog, and set_log set logarithmic scales for the x axis, y axis, and
both axes, respectively, for all plot types. Similarly, set_xlin, set_ylin, and set_lin set the scales
for the corresponding axes to linear. Hence, the changes made above for sherpa.dataplot could be made
for all plots at once as follows:

sherpa> set_xlin
sherpa> set_ylog

Controlling Display of Error Bars

Sherpa provides similar functions for controlling the drawing of error bars. sherpa.plot,
sherpa.dataplot, sherpa.fitplot, and sherpa.resplot contain the fields x_errorbars and
y_errorbars, which specify whether error bars should be drawn. To turn error bars on for all plot types,
use the functions set_xerron, set_yerron, and set_erron. To turn error bars off for all plot types,
use set_xerroff, set_yerroff, and set_erroff.

Advanced Customization with Function Hooks

All of the plotting state objects contain the fields prefunc and postfunc. These allow the user to define a
S−Lang function that is always executed before or after a plot is made, respectively, providing virtually
unlimited control over the appearance of plots. For more information on using these fields, see the
sherpa−plot−hooks ahelp file and the thread "Advanced customization of Sherpa plots".

Modifying Existing Plots

Any changes made to the plotting state objects apply only to plots created after the changes are made; they do
not apply to existing plots. Hence, running set_xlog after "LPLOT DATA" will not make the scale of the
plot's x axis logarithmic.

To change the appearance of an existing plot (without reissuing the LPLOT command), you must use ChIPS
commands. For example, to make the x axis of an existing plot logarithmic, use the command "LOG X"
followed by REDRAW.

Sherpa Configuration − Sherpa

Choosing Linear or Logarithmic Scales 5

Configuring Confidence−Level Calculations

Seven Sherpa state objects control the configuration of confidence−level calculations. The following table
lists these state objects and the corresponding Sherpa command that they configure:

State object Corresponding command

sherpa.regproj REGION−PROJECTION

sherpa.regunc REGION−UNCERTAINTY

sherpa.intproj INTERVAL−PROJECTION

sherpa.intunc INTERVAL−UNCERTAINTY

sherpa.proj PROJECTION

sherpa.cov COVARIANCE

sherpa.unc UNCERTAINTY

The ahelp files for the individual state objects describe them in detail. For an introduction to using these state
objects, see the thread "Step−by−Step Guide to Estimating Errors and Confidence Levels". For information on
how to use the paramest.sl script to simplify confidence−level calculations, see the thread "Estimating
Errors and Confidence Levels".

Displaying the Current Settings

Sherpa provides a number of functions for displaying the current and default settings of the confidence−level
state objects. For example, to show the current and default settings for sherpa.proj, use the list_proj
function:

sherpa> list_proj
Parameter Current Default Description
−−
fast 1 1 Switch to LM/simplex: 0(n)/1(y)
sigma 1 1 Number of sigma

Restoring the Default Settings

Sherpa also provides functions for restoring the default settings of the confidence−level state objects. For
example, to restore the default settings of sherpa.proj, use the restore_proj function:

sherpa> restore_proj

Other Configuration Options

Along with plots and confidence calculations, the Sherpa state object controls several other aspects of
Sherpa's behavior.

Floating−Point Output

The sherpa.output state object controls the appearance of floating−point numbers that are printed to the
screen (i.e. standard output). For example, you can tell Sherpa to display all floating−point numbers in
scientific notation by setting the scientific field to 1:

Sherpa Configuration − Sherpa

6 Configuring Confidence−Level Calculations

sherpa> sherpa.output.scientific = 1

Controlling Contour Levels

The CPLOT command generates contour plots of 2−D data, models, etc. By default, Sherpa automatically
calculates values for the contour levels. However, the user can specify contour levels by setting
sherpa.con_levs to an array of values:

sherpa> # Default is sherpa.con_levs = NULL (sherpa calculates levels)
sherpa> print(sherpa.con_levs)
NULL
sherpa> # Set levels to 0.5, 1.5, 3
sherpa> sherpa.con_levs = [0.5, 1.5, 3]

Note that sherpa.con_levs affects only CPLOT. It has no influence on the plots generated by
REGION−PROJECTION or REGION−UNCERTAINTY.

Model Overriding

The state object field sherpa.modeloverride affects how Sherpa handles the creation of models. If it is
set to 1, then a model can be redefined without first being erased with the ERASE command:

sherpa> print(sherpa.modeloverride)
0
sherpa> powlaw1d[m]
sherpa> gauss[m]
Error: model component name m is already in use.
 If the last command was to use m in a model stack,
 that stack has been deleted.
sherpa> sherpa.modeloverride = 1
sherpa> gauss[m]
sherpa> show m
gauss1d[m] (integrate: on)
...

Multiple Backgrounds Per Dataset

By default, Sherpa allows only one background data file per dataset. However, if sherpa.multiback is
set to 1, multiple background files are permitted:

sherpa> sherpa.multiback = 1

See the BACK command for more information on using multiple background files.

Deleting ds9 Frames

The IMAGE command sends 2−D images to ds9 for display. By default, Sherpa deletes all existing ds9 frames
before sending data to a newly−created frame. However, if sherpa.deleteframes is set to 0, then
existing frames will not be deleted (the data will still go to a new frame):

sherpa> # Default is to delete existing frames (sherpa.deleteframes = 1)
sherpa> print(sherpa.deleteframes)
1
sherpa> # Disable frame deletion
sherpa> sherpa.deleteframes = 0

Sherpa Configuration − Sherpa

Controlling Contour Levels 7

File Overwriting

By default, the WRITE command will not overwrite existing files. The user can change this behavior by
setting sherpa.clobber to 1:

sherpa> sherpa.clobber = 1

Saving and Restoring State Object Settings

The save_state function can be used to save the current state−object settings so that they can be used in
another Sherpa session.

If called with no arguments, save_state will write out the contents of all fields of all Sherpa state objects
to the file $HOME/.sherpa−state−rc:

sherpa> save_state
sherpa> $ more $HOME/.sherpa−state−rc
% Sherpa state for ciaouser, Wed Jul 30 17:45:13 2006

sherpa.plot.x_errorbars = 0;
sherpa.plot.y_errorbars = 0;
sherpa.plot.errs_style = "bar";
sherpa.plot.errs_type = "both";
...

This file will be over−written without warning, so you should not make changes to it manually. When Sherpa
starts, it will automatically load in the settings from this file, so any customizations your have made to the
state object will be restored.

If called with a filename as its argument, save_state will write out the settings to the specified file
(instead of $HOME/.sherpa−state−rc):

sherpa> save_state("my_settings.shp")
sherpa> $ more my_settings.shp
% Sherpa state for ciaouser, Wed Jul 30 17:45:13 2006

sherpa.plot.x_errorbars = 0;
sherpa.plot.y_errorbars = 0;
...

This file can then be read into a Sherpa session via the USE command. This can be useful, for example, if you
want to set up different plot styles for use in different situations.

Creating Aliases for State Objects

The names of the Sherpa state objects and their fields are verbose. This can be a benefit, as longer names are
more descriptive and give one a better sense of what particular objects and fields control. However, longer
names also require more typing, which can be a nuisance when making frequent changes. To alleviate this
problem, one may define aliases for state objects. For example, you can make dp an alias for
sherpa.dataplot as follows:

sherpa> dp = sherpa.dataplot

This command creates a S−Lang variable named dp that contains a reference to the sherpa.dataplot

Sherpa Configuration − Sherpa

8 File Overwriting

state object, allowing one to use dp as an alias for the full name:

sherpa> print(sherpa.dataplot.x_log)
0
sherpa> dp.x_log = 1
sherpa> print(sherpa.dataplot.x_log)
1

If you find aliases helpful, you can add lines to create them to your Sherpa resource file. This will make them
available during every Sherpa session.

Note that you can create aliases for state objects but not for atomic fields within state objects. For example,
you can create an alias for sherpa or sherpa.multiplot but not for sherpa.modeloverride.

History

14 Jan 2005reviewed for CIAO 3.2: no changes

21 Dec 2005reviewed for CIAO 3.3: no changes

01 Dec 2006reviewed for CIAO 3.4: no changes

URL: http://cxc.harvard.edu/sherpa/threads/state_objects/ Last modified: 1 Dec 2006

Sherpa Configuration − Sherpa

History 9

http://cxc.harvard.edu/sherpa/threads/state_objects/

Sherpa Configuration − Sherpa

10 History

