Connecting Galaxy Evolution, Star Formation and the X-ray Background

David R. Ballantyne

Prize Postdoctoral Fellow in Theoretical Astrophysics, U. of Arizona/CITA

Along with: J. Everett & N. Murray (CITA)

Barger et al. (2005)

- The redshift distribution of the sources peak at z
 <~ 1
- Quasars, the most powerful AGN, are mostly found at z ~ 2-3

Barger et al. (2005)

- The sources typically have X-ray luminosities < 10⁴⁴ erg/s
- Again much less than quasars (> 10⁴⁵ erg/s)

Connection to Star-Formation History?

Juneau et al. (2005

- The peak in the XRB z dist'n is close to where the cosmic SFR reaches its max
- The sources which produce the XRB are mostly obscured Seyfert-like AGN
- Hypothesis:
 - The increase in obscured AGN to z~1 is directly related to the increase in the cosmic SFR
 - □ i.e., the obscuration around the AGN is regulated by the host galaxy SFR -> it must evolve with z
- Prediction:
 - □ a Type 2/Type 1 ratio that evolves with z

Testing the model

Compute an XRB synthesis model and determine if there is a model that can simultaneously account for
 the spectrum of the XRB
 the number counts of X-ray sources in the 0.5-2 and 2-8 keV bands
 the Broad-Line AGN fractions measured by Barger et al.

The N_H Distribution

- Need to specify what fraction of AGN are absorbed by a specific column
 - □ in general, will be a function of z and L
 - only observed constraints are local
- Define AGN absorbed by columns with N_H < 10²² cm⁻² as Type 1; otherwise, Type 2
- 10 N_H bins are defined: log N_H = 20, 20.5, ..., 24, 24.5
- As a first try use a flat distribution
 - also used the Risaliti et al. (1999) dist'n where 50% of all Sy 2s are Compton thick

Methodology

First search for an evolution in the AGN Type-2/Type-1 ratio, *R*, that best accounts for the Barger et al. data

four different (arbitrary) parameterizations are used
all have a (1+z)- term
z evolution is halted at z=1

One other free parameter is the value of *R* at z_{min} and L_{min}, *R*₀

consider models with *R*₀ varying from 1,2,..,9,10

 R_0 =6 Type 1 fract. \propto (1+z)^{-1.9}

1 z=1.0 $0.1 \\ 1$ BLAGN Fraction 1.0 z=0.6 z = 0.250.1 III 1042 10^{44} 10^{43} 10^{45} 10^{46} X-ray Luminosity (erg $cm^{-2} s^{-1}$)

 R_0 =4 (cf., Maiolino & Rieke 1995) Type 2 fract. ∝ (1+z)^{0.3}

Results

 R_0 =4 (cf., Maiolino & Rieke 1995) Type 2 fract. ∝ (1+z)^{0.3}

Contours of Type 2/Type 1 ratio

Implications

The absorbing gas around an AGN is regulated by SF processes in the host galaxy

> the obscuring medium could be spread over a range of radii

MCG-6-30-15; Malkan et al. (1998)

Implications

- The star formation and AGN in these galaxies are fueled by interactions and minor mergers
- Seyferts are distinct from quasars in more than their luminosity!

NGC 1531 & 1532

Conclusions

- The Barger et al. (2005) Type 1 fractions indicate that z evolution of R is required
- A model which can account for the Barger data, the CXRB spectrum and number counts has $R_0=4$
 - □ The Type 2 fraction in this model evolves as $(1+z)^{0.3}$
- A simple, non-evolving torus cannot alone provide the AGN obscuration over all cosmic time
 - the shape of the CXRB spectrum is due to obscuration correlated with the SFR in the host galaxy
- Seyfert galaxies, which mainly produce the CXRB, are likely fueled by minor mergers and interactions
 - □ there may be a sig. delay b/w the interaction and the subsequent ignition of the AGN

Results

 R_0 =1 (Hao et al. 2005) Type 2 fract. ∝ (1+z)^{0.9}

 R_0 =1 (Hao et al. 2005) Type 2 fract. ∝ (1+z)^{0.9}

