MEASUREMENT OF THE HUBBLE CONSTANT WITH CHANDRA AND SUNYAEV-ZELDOVICH EFFECT OBSERVATIONS OF GALAXY CLUSTERS

> MAX BONAMENTE (NASA/NSSTC) MARSHALL JOY (NASA/MSFC) JOHN CARLSTROM (U. CHICAGO) SAMUEL LAROQUE (U. CHICAGO) ERIK REESE (U.C. DAVIS) KYLE DAWSON (U.C. BERKELEY)

THE SUNYAEV-ZELDOVICH EFFECT

INTERFEROMETRIC RADIO IMAGES 30 GHz

RX J1347.5-1145 (z=0.45)

CLUSTER	Ζ	CLUSTER	Z
CL 0016+1609	0. 541	ABELL 1689	0.183
ABELL 68	0. 255	RX J1347. 5-1145	0.451
ABELL 267	0.230	MS 1358. 4+6245	0.327
ABELL 370	0.375	ABELL 1835	0.252
MS 0451.6-0305	0.550	MACS J1423.8+2404	0.545
MACS J0647.7+7015	0.584	ABELL 1914	0.171
ABELL 586	0.171	ABELL 1995	0.322
MACS J 0744. 8+3927	0. 686	ABELL 2111	0. 229
ABELL 611	0. 288	ABELL 2163	0. 202
ABELL 665	0.182	ABELL 2204	0.152
ABELL 697	0. 282	ABELL 2218	0.176
ABELL 773	0.217	RX J1716. 4+6708	0.813
ZW 3146	0. 291	ABELL 2259	0.164
MACS J1115.2+5320	0.458	ABELL 2261	0. 224
MS 1054. 5-0321	0.826	MS 2053.7-0449	0.583
MS 1137. 5+6625	0.784	MACS J 2129. 4-0741	0.570
MACS J1149.5+2223	0.544	RX J2129.7+0005	0. 235
ABELL 1413	[0.142]	MAC J 2214. 9-1359	0.450
CL J1226.9+3332	\$ 0.890	MACS J 2228. 5+2036	0.412
MACS J1311.0-0310	0. 490		

X-RAY/SZE METHOD TO OBTAIN CLUSTER DISTANCES:

$$S_X \propto \int n^2 \Lambda dl$$
$$\Delta T^2_{CMB} \propto \int n T_e dl$$

X-RAY SURFACE BRIGHTNESS

SZE DECREMENT

ANGULAR DIAMETER DISTANCE $D_A = dl/d\theta$ $D_A \propto \frac{\Delta T_{CMB}^2 \Lambda}{S_X T_e^2}$

ADDITIONAL INGREDIENTS: HYDROSTATIC EQUILIBRIUM AND DARK MATTER

MCMC FOR PARAMETER ESTIMATION • USE A DOUBLE β MODEL FOR GAS DENSITY:

$$n_e = n_{eo} [f(1 + \frac{r^2}{r_c^2})^{-3/2\beta} + (1 - f)(1 + \frac{r^2}{r_c^2})^{-3/2\beta}]$$

• AND NFW DARK MATTER PROFILE.

11

HST KEY PROJECT: $H_0 = 72 \pm 3 \pm 7 \ km \ s^{-1} Mpc^{-1}$ Freedman et al. (2001) CHANDRA/SZE PROJECT: $H_0 = 77.3^{+4.1}_{-3.5} {}^{+7.6}_{-6.4} \ km \ s^{-1} Mpc^{-1}$ ($\Omega_M = 0.3, \Omega_A = 0.7$) DIRECTLY PROBES THE HUBBLE FLOW TO Z~1

ALTERNATIVE MODEL: 100 Kpc-CUT, SINGLE β -MODEL AND ISOTHERMAL

NO HYDROSTATIC EQUILIBRIUM ASSUMPTION

(100 Kpc-CUT MODEL)

CONCLUSIONS:

- ANALYZED SAMPLE OF 39 CLUSTERS AT z=0.14-0.89
- HIGH QUALITY X-RAY AND SZE OBSERVATIONS
- NON-ISOTHERMAL, DOUBLE- β MODEL, HSE $H_0 = 77.3^{+4.1}_{-3.5} {}^{+7.6}_{-6.4} \ km \ s^{-1} Mpc^{-1}$ • MEASURED HUBBLE CONSTANT:
- SAME ANSWER USING ISOTHERMAL, SINGLE- β MODEL