Chandra Monitoring of Nova V4743 Sgr

- J. Krautter, Landessternwarte, Heidelberg
- J.U. Ness, Oxford/ASU, Tempe
- S. Starrfield, ASU, Tempe
- A. Petz, Hamburg
- P. Hauschildt, Hamburg
- J.J. Drake, CfA, Cambridge

I. The nova outburst

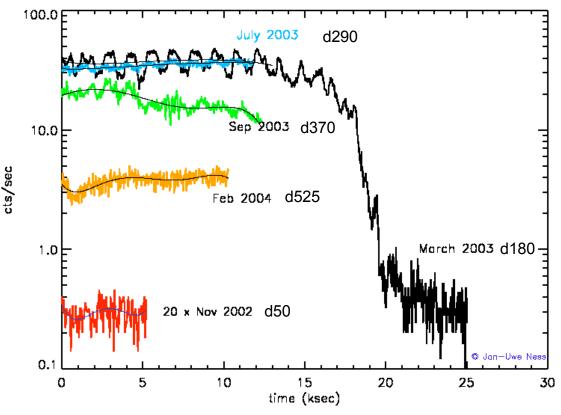
- Third strongest explosion of stellar object.
- A nova outburst is a **thermonuclear explosion** on top of a white dwarf in a cataclysmic binary system.

II. Sources of X-rays from novae in outburst

- Early very hot ("fireball") phase (T >> 10⁵ K)
 ⇒ hot stellar atmosphere (super-soft spectrum).
- Ongoing hydrostatic hydrogen burning on top of the white dwarf. Phase of constant bolometric luminosity (T >> 10⁵ K)
 - ⇒ hot stellar atmosphere (super-soft spectrum).
- Interaction of expanding envelope with CS material
 - ⇒ shocks ⇒ bremsstrahlung (harder SED)

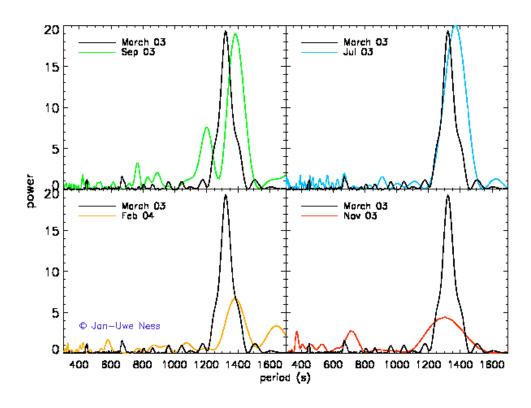
III. V4743 Sgr

- Detected on Sep 20, 2002
- $m_{max} \sim 5 \text{ mag}$
- t₃ < 15 days (very fast nova)
- $v_{exp} \sim 1200 \text{ km s}^{-1}$
- X-ray observations with
 - -- CHANDRA LETGS


ACIS-S

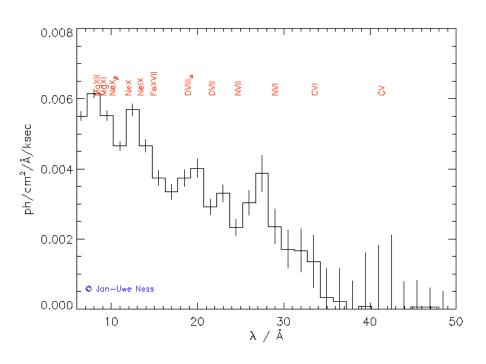
-- XMM-Newton RGS (Orio et al.)

Chandra observations


Date	Day	Exp. t	Instrument
		[ksec]	
Nov 9, 2002	50	5.3	ACIS-S
Mar 19, 2003	180	25.0	LETGS
Jul 07, 2003	290	11.7	LETGS
Sep 25, 2003	370	11.9	LETGS
Feb 28, 2004	525	10.3	LETGS

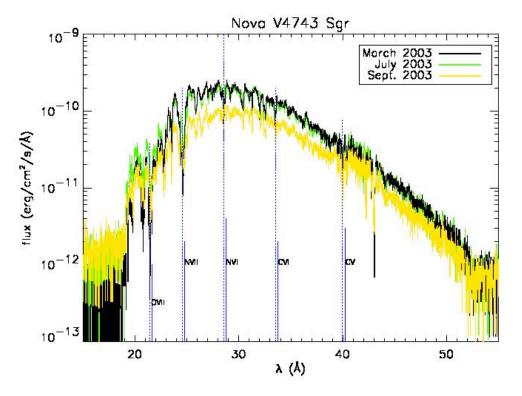
X-ray lightcurve

- Strong increase of count rate from day 50 to 180; decrease from day 290 to 525
- Strong variability
- periodic variations
- sudden decrease of count rate (day 180; Ness et al. 2003).
- Amplitude of periodic variations decreases.

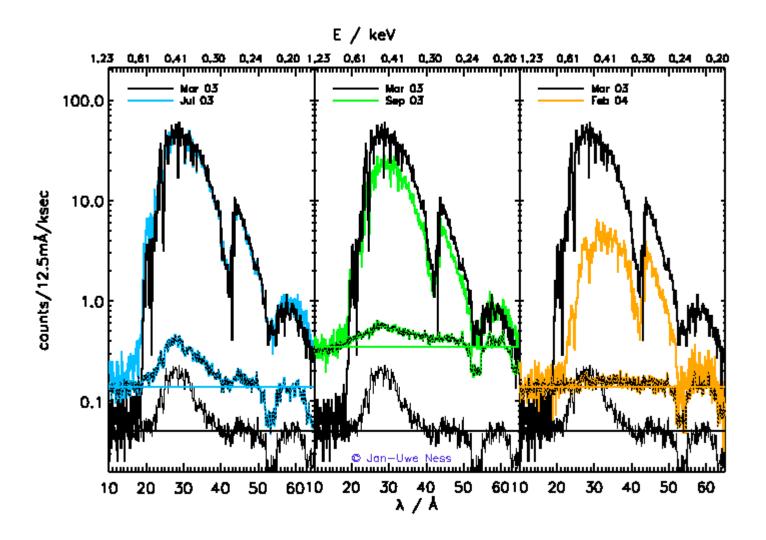

Periodic variations

Periodograms for light curves of V4743 Sgr.

- Periodograms similar for all epochs.
- Peak around 1300 sec
- Day 370: two peaks
- Overtones at 600 and 400 sec.
- Explanation: Rotation period of WD?
- Overtones] non-radial pulsations?
 (e.g. V1494 Aql, Drake et al. 2003)


Spectroscopic evolution

- Day 50: Hard spectrum, no soft component.
- soft radiation absorbed by H in expanding envelope.


ACIS-S spectrum on day 50

Spectroscopy

- Strong continuum emission of thermal origin.
- Super-soft spectrum
- Strong absorption features; can be identified with resonance lines of highly ionized ions.
- Absorption lines
 blueshifted by
 2400 km s⁻¹ (due to expanding envelope)

Evolution of soft component

count rate spectra of V4743 Sgr

- Spectrum gets softer in February 2004 (day 525)
] switch-off of hydrogen burning?
- spectral analysis requires full non-LTE treatment, done so far only for day 180 (with PHOENIX, Petz et al. 2005).
 - $-T_{eff} = 5.8 \cdot 10^5 \text{ K},$
 - $v_{exp} = 2500 \text{ km s}^{-1},$
 - $-L_{bol} = 2.10^{38} \text{ erg s}^{-1}$

Conclusions

- X-ray observations allow to study those areas where essential physical processes are going on.
- Several unusual features found:
 - non-radial pulsations
 - disapperance of X-ray flux

Results will be published by Ness et al. (to be submitted).