Penetrating the Deep Cover of Compton Thick AGN

Nancy A. Levenson

University of Kentucky

Timothy M. Heckman Julian H. Krolik Kimberly A. Weaver Piotr T. Życki JHU JHU NASA/GSFC and JHU N. Copernicus Astron. Ctr.

Compton Thick AGN

- $\bullet~N_{H} > 1.5 \times 10^{24}\,cm^{-2}$
- significant fraction of local AGN
- illustrate full variety of AGN-produced X-rays
- Here: case studies of 3 nearby Compton thick Seyferts 20 – 60 Mpc distance, \approx 30 ks Chandra exposures no contamination from starbursts

Hard Spectra

pure reflected AGN spectra
large EW Fe Kα

Hard Spectra

- pure reflected AGN spectra
- large EW Fe K α
- recover intrinsic L_{AGN} from Fe line luminosity 2–10 keV $L_{AGN} \approx 500 \times L_{Fe}$ directly detect only 1% of intrinsic X-ray emission
- luminosity emerges in far-infrared band

X-rays and the Optical Narrow Line Region

X-rays and the Optical Narrow Line Region

- similar morphology of NLR and X-rays
- NLR luminosity \gg soft X-ray luminosity
- emission regions related to warm absorbers, but not identical
- photoionization origin of both NLR and X-rays

Photoionized Lines

Photoionized Lines – Not Thermal Emission

Three-Color X-ray Diagnostic

Three-Color X-ray Diagnostic

Three-Color X-ray Diagnostic

Conclusions

- Nearby examples illustrate variety of AGN X-rays
- Fe K α large EW
 - $\rightarrow L_{AGN}$

only 1% intrinsic hard X-ray L_{AGN} is detected

- soft X-rays = photoionized lines not continuum, not thermal correspond to optical narrow line regions
- 3-band diagnostic diagram identifies Compton thick