PENNSTATE 6 Years of Science with Chandra Symposium, Cambridge, Nov 2, 2005

Supernova Remnant 1987A at the Age of 18: An On-Going Story by Chandra

Sangwook Park

David Burrows Judith Racusin Gordon Garmire (Penn State) Dick McCray Svetozar Zhekov (Colorado) Kazimierz Borkowski (NC State)

SN/SNR 1987A in Her Uniqueness

- Brightest supernova observed by mankind since 1604 (J. Kepler)
- Distance: 50 kpc, in the LMC
- Age: 18 years and 5 months old as of July 2005 0
- Type II SN
- Progenitor: Blue supergiant (Sk -69 202, B3 I)
- Neutrino burst
 - => Core-collapse explosion
- Most intensively studied SN of all time:
 - Optical/UV: HST and many ground-based
 - Radio: initial detection, turned on again in ~1990
 - X-ray: no initial detection, turned on in ~1990
 - Gamma-ray: detected decay lines from ${}^{56}Co \rightarrow$ decay of ${}^{56}Ni$,
 - Chandra monitoring since 1999: => ADS: 922 (~1/week) refereed papers (since 1987)
- twice a year, separated by ~6 months
- as of 2005-07, 13 observations performed

SNR 1987A: Chandra Observations

Date	Instruments	Exp.
(since SN)		(ks)
1000 10 ((1(00)		447
1999-10-6 (4609)	ACIS-S+HEIG	116
2000-1-17 (4711)	ACIS-53	9
2000-12-7 (5038)	ACIS-53	99
2001-4-25 (5176)	ACIS-S3	18
2001-12-12 (5407)	ACIS-53	49
2002-5-15 (5561)	ACIS-S3	44
2002-12-31 (5791)	ACIS-53	49
2003-7-8 (5980)	ACIS-53	45
2004-1-2 (6157)	ACIS-53	46
2004-7-22 (6359)	ACIS-53	49
2004-8-26 (6393)	ACIS-S+LETG	289
~ 2004-9-5 (6404)		
2005-1-9/13 (6533)	ACIS-53	48
2005-7-11/16 (6716) ACIS-53	44
2005-12 (~6870)	ACIS-53	50
2005-6 (~7050)	ACIS-S3	40

- Publications:

Burrows et al. 2000, ApJ 543, L149 (Obs 1-2) Park et al. 2002, ApJ, 567, 314 (Obs 1-4). Michael et al. 2002, 574, 166 (Obs 1 & 3) Park et al. 2004, AdSpR, 33, 386 (Obs 1-6). Park et al. 2004, ApJ, 610, 275 (Obs 1-7) Park et al. 2005, AdSpR, 35, 991 (Obs 1-9) Zhakovat di 2009, April 628, D127, (Obs.). Park et al. 2005, ApJL, in press (Obs 2-10, 12-13) Recusin et al. 2005, in preparation Of nov rodial expansion: Clos 2.121 Zhekovet al 2005 in preparation (Obs.1). General results from LFTG spectrum) Park et al. 2005 in preparation Cos 10-13 ACTS images and spectral analysis Current presentation: A review and the latest results

SN 1987A: the Ring System (HST)

Space Telescope Science Institute

Supernova 1987A Rings

Hubble Space Telescope Wide Field Planetary Camera 2

Inner ring is produced by fluorescence of gas in equatorial ring, ionized by initial UV flash of SN explosion.

SN 1987A: Optical Spot in the Inner Ring

Bright Knot in Supernova 1987A Ring PRC98-08b • February 10, 1998 • ST Sci OPO P. Gamavich (Harvard-Smithsonian Center for Astrophysics) and NASA

SNR 1987A: TIME-LAPSE MOVIE (HST)

SuperNova Intensive Study Collaboration

Spot 2 Spot 1 Spot 3 → Spot 4 Spot 5 Spot 6 Nov. 2003

Time-lapse movie of the SN 1987A inner ring: Feb. 1998 - Nov. 2003. The optical spots are now all around the inner ring.

SNR 1987A: Radio Images (ATCA)

Australian Telescope Compact Array

Courtesy of Bryan Gaensler & Lister Staveley-Smith

SNR 1987A: First X-ray Images

SNR 1987A: ACIS Images 2000-2005

Ring-like, asymmetric intensity Developments of X-ray spots => becoming a complete ring as the blast wave arrives the inner ring! Surface brightness increase => Now ~12 x brighter than 2000 No point source at the center

2002-05-15

2004-07-22

2005-01-09

2003-07-08

2005-07-11

Scheduled During Chandra AO7 ~2005-12

1 arcsec

SNR 1987A: ACIS Spectrum ("2-shock" model)

SNR 1987A: Soft X-Ray Light Curve

Linear increase of X-ray flux until day ~3000. Rate jump in 1997 (day ~3700): coincident with emergence of optical spots. An exponential radial density profile can fit the lightcurve over a decade.

An excess became evident since d ~ 6200. Forward shock enters a "wall"?

SNR 1987A: Soft X-Ray Intensity Ratio

SNR 1987A: Hard X-Ray Emission

SNR 1987A: Soft/Hard X-Ray Images

X-ray (2005-7) vs. Radio (2005-6) X-ray (2005-7) vs. Optical (2005-4)

Image: ACIS 3-8 keV Contours: ATCA 9 GHz

Image: ACIS 0.4-0.5 keV Contours: ATCA 9 GHz

Image: ACIS 0.8-1.2 keV Contours: $HSTH\alpha$

SNR 1987A: X-ray Expansion

Racusin et al. 2005 in preparation

X-ray radius vs time.

The broadband radial distribution for each observation is fitted to a Gaussian in order to estimate the radius of the SNR as a function of time.

Estimated expansion velocity is ~3155 km/s. But, it is apparently decelerating since d ~ 6200.

SNR 1987A: Dispersed Spectrum (1999)

Eli Michael / JILA

Combined Line Profile

Eli Michael / JILA

SNR 1987A: Dispersed Spectrum (2004)

Zhekov et al. 2005

(Line Profiles & Kinematics)

LETG/ACIS-S 289 ks 2004-8/9

Detailed X-ray lines are resolved with good stats.

Individual line widths & doppler shifts are measures for the first time.

The most reliable abundance measurements.

SNR 1987A: Dispersed X-Ray Spectrum

(Line Ratios)

Zhekov et al. 2005

Line ratios from individual species (Hea/Lya & G-ratio of the He-like triplets) cannot be satisfied with a single kT-n_et state. \Rightarrow X-ray emitting plasma is in multikT, Ionization states (e.g., kT = 0.1-2 keV)

10.0 $He\alpha/Ly\alpha$ ()Ne Temperature (keV) 1.0 255TE: 0.1 G-ratio(= [f+i]/r) 10.0 F 10¹³ 10¹⁰ 1011 10^{12} 10¹⁴0⁹ 10¹⁰ 1011 10^{12} 10^{13} 10^{14} Mq Femperature (keV) 1.0 0.1 10⁹ 10¹⁰ 1011 10^{12} 1013 10¹⁴0⁹ 10¹⁰ 10^{11} 10^{12} 1013 1014 n_et (cm -3 s) n_et (cm ⁻³ s)

SNR 1987A: Radial Expansion

- Evidence of shock wave expansion:
 - Development of optical spots: 1997 present
 - Development of X-ray spots: 1999 present
 - Predicted blast wave velocity from hydrodynamical models: ~4100 km/s (Borkowski et al. 1997)
 - Implied shock velocity from Doppler width of X-ray dispersed lines: ~3400 km/s (Michael et al. 2002)
 - Measured expansion rate of radio images: ~3000 km/s

(Manchester et al. 2002)

- Measurement of the radial expansion rate of X-ray images:
 ~ 3500 km/s, as of 2004-7.
- Since d ~ 6100, the expansion rate appears to be reduced to v ~ 1560 km/s (from ~3400 km/s).

SNR 1987A: Neutron Star?

Sangwook Park / PSU

No, NOT Detected Yet!

=> Stellar ejecta at the center of the SNR might still be optically thick in X-rays.

- Compare the observed 3-8 keV band images before and after adding simulated point sources (with various count rates) at the center of the SNR in order to determine upper limit (90 %) to point source contribution.
- Point source spectrum: $\Gamma = 1.7 3.0$, N_H = 2 x 10²¹ 10²⁴ cm⁻² are assumed.
- Based on the image taken on 2004-7-22, a point source upper limit is $Lx (3-10 \text{ keV}) \sim 5 \times 10^{33} 3 \times 10^{35} \text{ ergs s}^{-1}$

SNR 1987A: Summary (as of 2005-7)

- Development of X-ray (and optical) spots: result of the blast wave encountering the dense CSM produced by progenitor's stellar winds.
- Soft X-ray flux increase rate may be described by emission from shock-heated ISM with an exponential radial distribution.
- X-ray spectral variations suggest that the fast shock front is now entering the main body of the inner ring at day ~ 6000.
- A point source upper limit: L_x (3-10 keV) = $5 \times 10^{33}-3 \times 10^{35}$ ergs s⁻¹.
- \Rightarrow A dramatic flux increase (by ~3 orders of magnitudes) has begun.
- \Rightarrow Spectral & morphological changes should be watched.
- ⇒ First-ever Observation of "Birth of a Supernova Remnant & a Neutron Star!!
- Deep grating (LETG) observations (Aug 26 Sep 5, 2004) confirms X-ray emission originating from the inner ring.
- The next monitoring observations has been approved during AO8!!
 => continue to watch shock evolution, flux increase, nonthermal synchrotron emission, and neutron star.

SNR 1987A Time-Lapse Movie: (2000-01 to 2005-01)

To be continued...

Optical

PSU/SAO/CXC