A Detailed Study of

Collaborators: D. J. Helfand S. S. Murray S. Ransom F. D. Seward B. M. Gaensler E. V. Gotthelf E. van der Swaluw

the Pulsar Wind Nebula 3C 58

Patrick Slane

Pulsar Wind Nebulae

Patrick Slane

- Young NS powers a particle/magnetic wind that expands into SNR ejecta
 toroidal magnetic field results in axisymmetric equatorial wind
- Termination shock forms where pulsar wind meets slowly expanding nebula
 radius determined by balance of
 - ram pressure and pressure in nebula
- As PWN accelerates higher density ejecta, R-T instabilities form
 optical/radio filaments result
- As SNR/PWN ages, reverse shock approaches/disrupts PWN
 not of interest in context of 3C 58 as no blast-wave component is seen (low n)

About 3C 58

Slane et al. 2004

Wind nebula produced by PSR J0205+6449

- D = 3.2 kpc (HI absorption)
- size: 9 x 5 arcmin ==> 8.4 x 4.7 pc
- P = 62 ms (Camilo et al. 2002)
- Believed to be associated w/ SN 1181 based on historical records
 - pulsar has 3rd highest spin-down power of Galactic pulsars

==> very young

 however, PWN expansion velocity observed in optical filaments is too low to explain large size, making association troublesome

Harvard-Smithsonian Center for Astrophysics

How Does the Neutron Star Interior Cool?

NS matter is highly degenerate

• We thus require

Momentum conservation requires

Patrick Slane

momentum can only be conserved for Urca reactions if proton fraction is >0.12
for lower values, need bystander particle

to conserve momentum

PSR J0205+6449: Cooling Emission

 Point source spectrum is a power law; adding blackbody component leads to limit on surface cooling emission

- since atmosphere effects harden spectrum, limit on surface temperature is conservative

Patrick Slane

• For NS w/ *R* = 10 km,

- standard cooling models predict higher temperature for this age
- may indicate direct Urca or pion cooling

Komissarov & Lyubarsky 2003

PWN Jet/Torus Structure

- Poynting flux from outside pulsar light cylinder is concentrated in equatorial region due to wound-up B-field
 - termination shock radius decreases with increasing angle from equator
- For sufficiently high magnetization parameter ($\sigma \sim 0.01$), magnetic stresses can divert particle flow back inward
 - collimation into jets may occur
 - asymmetric brightness profile from Doppler beaming

Collimation is subject to kink instabilities

- magnetic loops can be torn off near TS and expand into PWN (Begelman 1998)
- many pulsar jets are kinked or unstable, supporting this picture

Harvard-Smithsonian Center for Astrophysics

Inner Structure in PWNe: Jets

40" = 0.4 pc

Crab Nebula (Weisskopf et al 2000)

- Collimated features
 some curved at ends why?
- Wide range in brightness and size (0.01–6 pc)
 how much energy input?
- Perpendicular to inner ring - directed along spin axis?

PSR B1509-58 (Gaensler et al 2002)

Kommisarov & Lyubarsky (2003)

Vela PWN (Pavlov et al 2003)

- Relativistic flows:
 motion, spectral analysis give v/c ~ 0.3–0.6
- Primarily one-sided - Doppler boosting?
- Magnetic collimation / hoop stress?

Harvard-Smithsonian Center for Astrophysics

3C 58: Structure of the Inner Nebula

- if termination shock, suggests ring-like structure tilted at about 70 degrees
- agrees w/ spindown
- profile shows bump from torus
- Suggests E-W axis for pulsar
 - consistent with E-W elongation of 3C 58 itself due to pressure from toroidal field (van der Swaluw 2003)

Harvard-Smithsonian Center for Astrophysics

Spectral Structure of 3C 58

- Radial steepening of spectral index shows aging of synchrotron-emitting electrons
 - consistent with injection from central pulsar
- Modeling of spectral index in expected toroidal field is <u>unable</u> to reproduce the observed profiles
 - model profile has much more rapid softening of spectrum (Reynolds 2003)

- diffusive particle transport and mixing may be occurring

Harvard-Smithsonian Center for Astrophysics

3C 58: A Thermal Shell

Energy (keV)

- Thermal component requires enhanced neon
 - consistent with ejecta being swept up by PWN

Harvard-Smithsonian Center for Astrophysics

 Outer region shows thermal emission (Bocchino et al. 2001)

- Chandra confirms presence of a thermal shell
- corresponds to ~0.06 solar masses
- 3C 58 has evolved in a very low density region

Getting Ahead of Ourselves...

- Current Con-X baseline gives ~16000 counts in Ne line in a 100 ks observation
- Can measure velocity shift of front/back shell to address discrepancy in expansion - variation in projected velocity with radius easily measured as well

Patrick Slane

Filaments in PWNe

Patrick Slane

- As PWN expands, it encounters and accelerates denser ejecta
 - Rayleigh-Taylor instabilities form a network of optical line-emitting filaments
 - compressed magnetic field enhances synchrotron emission as well, creating radio filaments
- In Crab Nebula, velocities show that filaments form a shell
 - X-ray filaments not seen because
 B-field is too large for energetic
 particles to reach outskirts of nebula

3C 58: Radio vs X-ray Size

Patrick Slane

- The X-ray emission from 3C 58 extends virtually all the way to the radio boundary
 - magnetic is smaller than in Crab; synchrotron break must be just below X-ray band

 In this case, we might expect to see X-ray filaments as well

Filamentary Structure in 3C 58

Slane et al. 2004

• X-ray emission shows considerable filamentary structure

- particularly evident in higher energy X-rays
- Radio structure is <u>remarkably</u> similar, both for filaments and overall size

Patrick Slane

Filamentary Structure in 3C 58

• X-ray emission shows considerable filamentary structure

- particularly evident in higher energy X-rays
- Radio structure is <u>remarkably</u> similar, both for filaments and overall size

Patrick Slane

Optical Filaments in 3C 58

- Considerable filamentary structure is seen in optical images of 3C 58
 - these are presumably similar in nature to Crab optical filaments; evidence of ejecta encountered by expanding PWN
- These filaments do not seem to have X-ray counterparts (with a few possible exceptions)
 - indicative of a different origin?
 - Loop-like structure and lack of thermal emission suggest magnetic structures
 - produced by kink instabilities in toroidal field (Begelman 1998)?
 - may also be responsible for curved jets seen in Crab, Vela, 3C 58, and others

Harvard-Smithsonian Center for Astrophysics

Optical Filaments in 3C 58

Patrick Slane

- Considerable filamentary structure is seen in optical images of 3C 58
 - these are presumably similar in nature to Crab optical filaments; evidence of ejecta encountered by expanding PWN
- These filaments do not seem to have X-ray counterparts (with a few possible exceptions)
 - indicative of a different origin?
- Loop-like structure and lack of thermal emission suggest magnetic structures
 - produced by kink instabilities in toroidal field (Begelman 1998)?
 - may also be responsible for curved jets seen in Crab, Vela, 3C 58, and others

IRAC Observations of 3C 58

- PWN clearly detected
 - extent and morphology similar to radio
 - suggestions synchrotron emission in IR
- Torus region around pulsar detected as well

Patrick Slane

Summary

- 3C 58 is a typical PWN powered by a young, energetic pulsar
- Limits on blackbody emission from NS indicate nonstandard cooling
 - interpretations with direct Urca processes or pion condensates are suggested
- Central X-ray source is extended in N-S direction
 - consistent with wind termination shock
 - indicates E-W pulsar axis with 70 degree tilt to line of sight
 - deep observation resolves jet/torus structure
- Outer nebula has thermal shell
 - overabundance of Ne indicates ejecta component
 - total mass of shocked gas is small; radius implies small ejecta mass
- Inner nebula shows numerous loop-like and extended structures
 - radio structure is remarkably similar
 - optical filaments do <u>not</u> show good coincidence w/ X-ray features
 - different origin? (kink instability structures?)

Patrick Slane

A Pulsar in G21.5-0.9

• Camilo et al. (2005 - submitted)

P68 #531 Orz \$48

- 2nd highest spin-down power, next to Crab
- faint in radio: 70 µJy @1.4 GHz
- 350 ks HRC image shows compact object embedded in extended core
 - offset from center suggests tilted torus w/ spin axis in NE/SW direction
- •No pulsations seen in 30 ks HRC timing data
 - pulsed fraction may not be extremely low; surrounding core is bright

- PWN is extended along same NE/SW direction, as with other such systems
 - "bay" in NW is along inferred equatorial plane similar to Crab "bays"

Questions:

20 arcsec

- Why is this young, energetic pulsar so faint?
- What is symmetric filamentary structure telling us about the geometry and evolution?

Harvard-Smithsonian Center for Astrophysics

Patrick Slane

3 arcsec

PSR B1509-58

Just Completed...

Patrick Slane