Centaurus A: Interaction of a Radio Source with its Environment

Paul Nulsen
(Harvard-Smithsonian Center for Astrophysics)

Ralph Kraft, David Stark,
JH Croston, MJ Hardcastle,
M Birkinshaw, DM Worrall,
GR Sivakoff, A Jordán, NJ Brassington,
DA Evans, WR Forman, M Gilfanov,
JL Goodger, WE Harris, C Jones, AM Juett,
SS Murray, S Raychaudhury, CL Sarazin,
R Voss, KA Woodley

Centaurus A

45

Near – distance ≈ 3.7 Mpc (average of 5 values discussed in Ferrarese et al. 2007).

Elliptical galaxy with clear signs of a merger - dust lanes and shells

Review by Israel (1998)

Centaurus A Radio Galaxy (VLT KUEYEN + FORS2)

@ European Southern (

Peng et al. 2002

ESO PR Photo 05b/00 (8 February 2000)

Centaurus A

Nearest extragalactic radio source - active galaxy

Morganti et al. (1999)

Chandra Image of Centaurus A

Dust lane

Hot gas

Southwest radio lobe, surrounded by shock – to ~5.5 arcmin (6 kpc)

Jet to northeast

Southwest Radio Lobe

0.3 – 1.5 keV X-ray emission in blue and 5 GHz radio emission in red.

Lobe emission was originally interpreted as shocked ISM (Kraft et al 2003; 2007)

Apparent density jump exceeded 4, maximum compression for hydrodynamic shock with ratio of specific heats $\Gamma = 5/3$.

Synchrotron Shock Model

Croston et al (2009):

X-ray spectral fits to regions around the SW lobe strongly prefer power-law to thermal models.

Power law fit: $\chi^2 = 931/744$ dof vs worse than 1010/743 for thermal models (adding thermal component gave insignificant improvement). No line emission.

Power law fit: χ^2 = 333/309 dof vs worse than 344/308 for thermal models

Thermal model is preferred for region closer to the nucleus: $\chi^2 = 137/97$, kT ≈ 1 keV, vs 445/98 for power law model. Emission lines prominent.

Synchrotron Shock Model

Expect synchrotron emission across a wide range of frequencies. Reasonable models for the electron energy distribution can produce the X-ray emission without exceeding upper limits at other wavelengths. (IC models inconsistent with lack of radio emission.)

$$\alpha = 0.5 \ (p = 2), \ \gamma_{min} = 10,$$

 $\gamma_{break} = 4.4 \times 10^4, \ \gamma_{max} = 5 \times 10^9.$

$$\alpha = 0.5 \ (p = 2), \ \gamma_{min} = 10,$$

no break, $\gamma_{max} = 3 \times 10^8$.

Synchrotron Shock Model

Models for diffusive shock acceleration, where γ_{max} is determined by competition between acceleration timescale and radiative losses (eg Reynolds 1996), imply $\gamma_{max} \sim 10^8$ at the tip of SW lobe (where the shock is strongest). Variation of shock speed may then account for the lack of non-thermal X-ray emission from the shock nearer the AGN.

(Upper limit)
$$\alpha = 0.5$$
 (p = 2), $\gamma_{min} = 10$, $\gamma_{break} = 4.4 \times 10^4$, $\gamma_{max} = 5 \times 10^9$.

$$\alpha = 0.5 \ (p = 2), \ \gamma_{min} = 10,$$

no break, $\gamma_{max} = 3 \times 10^{8}$.

Jet Power

Behind the thermal shock in north:

Proton density $n_p = 0.033 \text{ cm}^{-3}$ and kT = 0.95 keV => pressure = 1.1×10⁻¹⁰ cgs.

High sound speed =>pressure nearly uniform in lobe, so same pressure drives SW shock.

Outside shock, $n_e \approx 0.001$ cm⁻³, kT = 0.35 keV (Kraft et al 2003), so pressure jump at shock $\approx 87 = 8.4$, or $v_{shock} \approx 2600$ km s⁻¹.

Thermal emission from the shocked gas is negligible compared to the non-thermal emission observed.

Integrating over energy distribution of non-thermal electrons and including equipartition magnetic field (no protons) gives their contribution to the pressure as no more than $\approx 2 \times 10^{-12}$ cgs – negligible compared to the thermal pressure.

Shock age, $2a/v_{shock} \approx 2 \times 10^6 \text{ y} => \text{average power} \approx 4 \text{pV/age} \approx 10^{43} \text{ erg s}^{-1}$.

"Instantaneous" power, P = p dV/dt = pV(1/a da/dt + 2/b db/dt) = 3pV 1/a da/dt = 4π pb² da/dt = 2π pb²v_{shock} $\approx 6.6 \times 10^{42}$ erg s⁻¹.

Cen A, 5 GHz (red) and 0.3 – 1.5 keV (blue)

NE Jet Flow Model

Like Laing & Bridle (2002):

Gas temperature (kT \approx 0.55 keV), density profile ($n_e \sim r^{-1.26}$), pressure from Chandra data. **Equate to internal pressure.

Steady, near 1-d flow. Area of cross, A, varies with radius, R.

Proper density of jet rest mass, p. Rate of flow through jet $\dot{M} = \gamma \beta c A \rho$

Allowing for entrainment α is rate of mass injection

$$\left| \dot{M} \right|_{1}^{2} = \int_{1}^{2} \alpha A dR$$

Power through jet assumed constant: $P = (\gamma - 1) M c^2 + hAc\beta \gamma^2$

h = enthalpy per unit volume, h = p + e = $\Gamma p/(\Gamma - 1)$, for pressure p. Here $\Gamma = 13/9$.

Momentum flux

$$\Pi = (P/c + Mc)\beta$$

 $\Pi = (P/c + Mc)\beta$ affected by buoyancy

$$\left.\Pi\right|_{1}^{2} = \int_{1}^{2} \frac{dp}{dR} A dR$$

Jet Width

Knots complicate measurement of jet width

Plot shows angle subtended by jet at the AGN

Flow Parameters

Fiducial values:

Jet power, $P = 6 \times 10^{42}$ erg s⁻¹ (cf 6.6×10⁴² erg s⁻¹ for power into SW lobe, Croston et al 2009).

Initial speed, β = 0.7: radio knot proper motions of \approx 0.5c near start of jet (Hardcastle et al 2003).

Mass injection:

Star density is expressed as a fraction, f, of gravitating mass density (determined from hydrostatic equilibrium). Expect $f \approx 1$ at R = 100 arcsec (1.8 kpc; also consistent with photometry). Then $\alpha = f \, \rho_{\text{grav}} \, / \, \tau$, with $\tau = 10^{12}$ yr (Faber & Gallagher 1976).

Allow for other entrainment by varying f.

In fact, solution is over-determined, so we adjust f to make change in momentum flux match the buoyant force.

Fiducial Model

Non-dissipative flow would obey Bernoulli's theorem: pressure decrease => speed increase – inconsistent with data.

Need f = 0.60 to make $\Delta\Pi = buoyant force -$

ie, stellar mass loss within the jet can account for all dissipation.

2009 Sept 25

Chandra's 1st Decade of Discovery

Variations

Initial $\beta = 0.85$ need f = 0.42

(for $\beta = 0.5$, f = 0.93)

 $P = 3 \times 10^{42} \text{ erg s}^{-1}$ need f = 0.61

Effect of Environment

If dissipation is governed by stellar mass injection, the jet is unstable: larger cross section => more stars in jet, hence more dissipation => more broadening

Model:
$$\frac{d\dot{M}}{dR} = \alpha A$$
; $\frac{d\Pi}{dR} = -A\frac{dp}{dR}$; $P = \text{constant}$

Same power, initial speed, mass injection (α) as fiducial model, but bounding pressure is scaled down by a factor up to 2:

Moderate (transient) asymmetry in environment may make the difference between a jet and a lobe.

Effect of Environment

Stellar Mass Loss

Total mass injection $\approx 2 \times 10^{-4} \, M_{\odot} \, \text{yr}^{-1}$, comparable to mass loss rate of $\sim 100 \, \text{AGB}$ stars.

Comparable to the number of knots in the jet (eg Hardcastle et al 2007), suggesting that each knot may be caused by a single star.

Ram pressure stops wind where $p_{ram} \approx \rho_{wind} v_{wind}^2$, ie for a star losing 10^{-6} M_{\odot} yr⁻¹, with $v_{wind} = 10$ km s⁻¹, at 20" from the AGN, only ≈ 0.009 pc from the star. (cf. \sim 3 pc, Tingay & Lenc 2009).

A wind of $\approx 10^{-6}$ M $_\odot$ yr $^{-1}$ must intercept $\approx 1\%$ of jet (mass flux $\approx 10^{-4}$ M $_\odot$ yr $^{-1}$) to be accelerated to jet speed

- ⇒ long trails behind AGB stars where wind gas is accelerated and mixed with jet gas
- ⇒ supersonic, turbulent wake?

Conclusions

- X-ray emission from shock surrounding SW radio lobe is predominantly synchrotron
- The shock speed ≈ 2600 km s⁻¹ and the jet power $\approx 6.6 \times 10^{42}$ erg s⁻¹
- Stellar mass loss may be the primary source of mass entrained by the Cen A jet
- Modest asymmetry in the environment can make the difference between a jet and a lobe
- Many jet knots may be due to individual AGB stars within the jet