Chandra X-Ray Observatory
Skip to the navigation links
Last modified: December 2015

Jump to: Description · Bugs · See Also

AHELP for CIAO 4.9 Sherpa v1


Context: models


Thermal and bulk Comptonization for cylindrical accretion onto the polar cap of a magnetized neutron star. XSPEC model.


This model describes the spectral formation in the accretion column onto the polar cap of a magnetized neutron star, with both thermal and bulk Comptonization processes taken into account. The details for the method adopted for the numerical solution of the radiative transfer equation are reported in Farinelli et al. (2012, A&A, 538, A67).

This model can be used for spectral fitting of both accreting X-ray pulsars and Supergiant Fast X-ray Trasients.

This is an additive model component.

xscompmag Parameters

Number Name Description
1 kTbb temperature of the seed blackbody spectrum (keV)
2 kTe electron temperature of the accretion column (keV)
3 tau vertical optical depth of the accretion column, with electron cross-section equal to 10^-3 of the Thomson cross-section
4 eta index of the velocity profile when the accretion velocity increases towards the neutron star (valid when betaflag=1)
5 beta0 terminal velocity of the accreting matter at the neutron star surface (valid when betaflag=1)
6 r0 radius of the accretion column in units of the neutron star Schwarzschild radius
7 A albedo at the neutron star surface
8 betaflag Flag for setting the velocity profile of the accretion column. When betaflag=1, beta(z) = A(Zs/Z)^-eta, where A=beta0 (Z0/Zs)^eta. When betaflag=2, beta(tau) = -alpha tau.
9 norm (R_km/D_10)^2, where R_km and D_10 are the accretion column radius in km and the source distance in units of 10 kpc, respectively

XSPEC version

This information is taken from the XSPEC User's Guide. Version 12.9.0o of the XSPEC models is supplied with CIAO 4.9.


For a list of known bugs and issues with the XSPEC models, please visit the XSPEC bugs page.

To check the X-Spec version used by Sherpa, use the get_xsversion routine from the xspec module:

sherpa> from sherpa.astro.xspec import get_xsversion
sherpa> get_xsversion()

See Also

absorptionedge, absorptiongaussian, absorptionlorentz, absorptionvoigt, accretiondisk, atten, bbody, bbodyfreq, beta1d, beta2d, blackbody, box1d, box2d, bpl1d, bremsstrahlung, brokenpowerlaw, ccm, const1d, const2d, cos, delta1d, delta2d, dered, devaucouleurs2d, disk2d, edge, emissiongaussian, emissionlorentz, emissionvoigt, erf, erfc, exp, exp10, fm, gauss1d, gauss2d, hubblereynolds, jdpileup, linebroad, list_model_components, list_models, lmc, load_xscflux, load_xsgsmooth, load_xsireflect, load_xskdblur, load_xskdblur2, load_xskerrconv, load_xslsmooth, load_xspartcov, load_xsrdblur, load_xsreflect, load_xssimpl, load_xszashift, load_xszmshift, log, log10, logabsorption, logemission, logparabola, lorentz1d, lorentz2d, models, normbeta1d, normgauss1d, normgauss2d, opticalgaussian, poisson, polynom1d, polynom2d, polynomial, powerlaw, powlaw1d, recombination, scale1d, scale2d, schechter, seaton, sersic2d, shell2d, sigmagauss2d, sin, sm, smc, sqrt, stephi1d, steplo1d, tablemodel, tan, xgal, xs, xsabsori, xsacisabs, xsagauss, xsapec, xsbapec, xsbbody, xsbbodyrad, xsbexrav, xsbexriv, xsbkn2pow, xsbknpower, xsbmc, xsbremss, xsbvapec, xsbvvapec, xsc6mekl, xsc6pmekl, xsc6pvmkl, xsc6vmekl, xscabs, xscemekl, xscevmkl, xscflow, xscompbb, xscompls, xscompps, xscompst, xscomptb, xscompth, xscomptt, xsconstant, xsconvolve, xscplinear, xscutoffpl, xscyclabs, xsdisk, xsdiskbb, xsdiskir, xsdiskline, xsdiskm, xsdisko, xsdiskpbb, xsdiskpn, xsdust, xsedge, xseplogpar, xseqpair, xseqtherm, xsequil, xsexpabs, xsexpdec, xsexpfac, xsezdiskbb, xsgabs, xsgadem, xsgaussian, xsgnei, xsgrad, xsgrbm, xsheilin, xshighecut, xshrefl, xskerrbb, xskerrd, xskerrdisk, xslaor, xslaor2, xslogpar, xslorentz, xslyman, xsmeka, xsmekal, xsmkcflow, xsnei, xsnotch, xsnpshock, xsnsa, xsnsagrav, xsnsatmos, xsnsmax, xsnsmaxg, xsnsx, xsnteea, xsnthcomp, xsoptxagn, xsoptxagnf, xspcfabs, xspegpwrlw, xspexmon, xspexrav, xspexriv, xsphabs, xsplabs, xsplcabs, xsposm, xspowerlaw, xspshock, xspwab, xsraymond, xsredden, xsredge, xsrefsch, xsrnei, xssedov, xssirf, xssmedge, xsspexpcut, xsspline, xssrcut, xssresc, xssss_ice, xsstep, xsswind1, xstbabs, xstbgrain, xstbvarabs, xsuvred, xsvapec, xsvarabs, xsvbremss, xsvequil, xsvgadem, xsvgnei, xsvmcflow, xsvmeka, xsvmekal, xsvnei, xsvnpshock, xsvphabs, xsvpshock, xsvraymond, xsvrnei, xsvsedov, xsvvapec, xsvvgnei, xsvvnei, xsvvnpshock, xsvvpshock, xsvvrnei, xsvvsedov, xswabs, xswndabs, xsxion, xszagauss, xszbabs, xszbbody, xszbremss, xszdust, xszedge, xszgauss, xszhighect, xszigm, xszpcfabs, xszphabs, xszpowerlw, xszredden, xszsmdust, xsztbabs, xszvarabs, xszvfeabs, xszvphabs, xszwabs, xszwndabs, xszxipcf

Last modified: December 2015
Smithsonian Institute Smithsonian Institute

The Chandra X-Ray Center (CXC) is operated for NASA by the Smithsonian Astrophysical Observatory. 60 Garden Street, Cambridge, MA 02138 USA.   Email: Smithsonian Institution, Copyright © 1998-2017. All rights reserved.