Chandra X-Ray Observatory
	(CXC)
Skip to the navigation links
Last modified: December 2015

URL: http://cxc.harvard.edu/sherpa/ahelp/xsnsa.html
Jump to: Description · Bugs · See Also


AHELP for CIAO 4.9 Sherpa v1

xsnsa

Context: models

Synopsis

Spectra in the X-ray range (0.05-10 keV) emitted from a hydrogen atmosphere of a neutron star. XSPEC model.

Description

This model provides the spectra in the X-ray range (0.05-10 keV) emitted from a hydrogen atmosphere of a neutron star. There are three options:

  • nonmagnetized (B < 1e8 - 1e9 G) with a uniform surface (effective) temperature in the range of log T_eff(K) = 5.0-7.0 ;
  • a field B = 1e12 G with a uniform surface (effective) temperature in the range of log T_eff(K) = 5.5-6.8 ;
  • a field B = 1e13 G with a uniform surface (effective) temperature in the range of log T_eff(K) = 5.5-6.8 .

The atmosphere is in radiative and hydrostatic equilibrium; sources of heat are well below the atmosphere. The Comptonization effects significant at T_eff > 3e6 K) are taken into account. The model spectra are provided as seen by a distant observer, with allowance for the GR effects. The user is advised to keep M_ns and R_ns fixed and fit the temperature and the normalization. MagField must be fixed at one of 0, 1e12, or 1e13 G.

The values of the effective temperature and radius as measured by a distant observer ("values at infinity") are

T_eff^Inf = g_r*T_eff
R_ns^Inf = R_ns/g_r

where

g_r=(1-2.952*M_ns/R_ns)^(1/2)

This is an additive model component.

xsnsa Parameters

Number Name Description
1 logt_eff (unredshifted) effective temperature
2 m_ns neutron star gravitational mass (in units of solar mass)
3 r_ns neutron star radius (in km)
4 magfield neutron star magnetic field (0, 1e12, or 1e13 G)
5 norm K; 1/D^2, where D is the distance of the object in pc.

Please send your comments/questions to Slava Zavlin (VYACHESLAV.ZAVLIN@msfc.nasa.gov) and/or George Pavlov (pavlov@astro.psu.edu). If you publish results obtained using these models, please reference Zavlin, V.E., Pavlov, G.G., & Shibanov, Yu.A. 1996, A&A, 315, 141 for nonmagnetic models, and Pavlov, G.G., Shibanov, Yu.A., Zavlin, V.E., & Meyer, R.D. 1995, in "The Lives of the Neutron Stars," ed. M.A. Alpar, U. Kiziloglu, & J. van Paradijs (NATO ASI Ser. C, 450; Dordrecht: Kluwer), p. 71 for magnetic models.

XSPEC version

This information is taken from the XSPEC User's Guide. Version 12.9.0o of the XSPEC models is supplied with CIAO 4.9.

Bugs

For a list of known bugs and issues with the XSPEC models, please visit the XSPEC bugs page.

To check the X-Spec version used by Sherpa, use the get_xsversion routine from the xspec module:

sherpa> from sherpa.astro.xspec import get_xsversion
sherpa> get_xsversion()
'12.9.0o'

See Also

models
absorptionedge, absorptiongaussian, absorptionlorentz, absorptionvoigt, accretiondisk, atten, bbody, bbodyfreq, beta1d, beta2d, blackbody, box1d, box2d, bpl1d, bremsstrahlung, brokenpowerlaw, ccm, const1d, const2d, cos, delta1d, delta2d, dered, devaucouleurs2d, disk2d, edge, emissiongaussian, emissionlorentz, emissionvoigt, erf, erfc, exp, exp10, fm, gauss1d, gauss2d, hubblereynolds, jdpileup, linebroad, list_model_components, list_models, lmc, load_xscflux, load_xsgsmooth, load_xsireflect, load_xskdblur, load_xskdblur2, load_xskerrconv, load_xslsmooth, load_xspartcov, load_xsrdblur, load_xsreflect, load_xssimpl, load_xszashift, load_xszmshift, log, log10, logabsorption, logemission, logparabola, lorentz1d, lorentz2d, models, normbeta1d, normgauss1d, normgauss2d, opticalgaussian, poisson, polynom1d, polynom2d, polynomial, powerlaw, powlaw1d, recombination, scale1d, scale2d, schechter, seaton, sersic2d, shell2d, sigmagauss2d, sin, sm, smc, sqrt, stephi1d, steplo1d, tablemodel, tan, xgal, xs, xsabsori, xsacisabs, xsagauss, xsapec, xsbapec, xsbbody, xsbbodyrad, xsbexrav, xsbexriv, xsbkn2pow, xsbknpower, xsbmc, xsbremss, xsbvapec, xsbvvapec, xsc6mekl, xsc6pmekl, xsc6pvmkl, xsc6vmekl, xscabs, xscemekl, xscevmkl, xscflow, xscompbb, xscompls, xscompmag, xscompps, xscompst, xscomptb, xscompth, xscomptt, xsconstant, xsconvolve, xscplinear, xscutoffpl, xscyclabs, xsdisk, xsdiskbb, xsdiskir, xsdiskline, xsdiskm, xsdisko, xsdiskpbb, xsdiskpn, xsdust, xsedge, xseplogpar, xseqpair, xseqtherm, xsequil, xsexpabs, xsexpdec, xsexpfac, xsezdiskbb, xsgabs, xsgadem, xsgaussian, xsgnei, xsgrad, xsgrbm, xsheilin, xshighecut, xshrefl, xskerrbb, xskerrd, xskerrdisk, xslaor, xslaor2, xslogpar, xslorentz, xslyman, xsmeka, xsmekal, xsmkcflow, xsnei, xsnotch, xsnpshock, xsnsagrav, xsnsatmos, xsnsmax, xsnsmaxg, xsnsx, xsnteea, xsnthcomp, xsoptxagn, xsoptxagnf, xspcfabs, xspegpwrlw, xspexmon, xspexrav, xspexriv, xsphabs, xsplabs, xsplcabs, xsposm, xspowerlaw, xspshock, xspwab, xsraymond, xsredden, xsredge, xsrefsch, xsrnei, xssedov, xssirf, xssmedge, xsspexpcut, xsspline, xssrcut, xssresc, xssss_ice, xsstep, xsswind1, xstbabs, xstbgrain, xstbvarabs, xsuvred, xsvapec, xsvarabs, xsvbremss, xsvequil, xsvgadem, xsvgnei, xsvmcflow, xsvmeka, xsvmekal, xsvnei, xsvnpshock, xsvphabs, xsvpshock, xsvraymond, xsvrnei, xsvsedov, xsvvapec, xsvvgnei, xsvvnei, xsvvnpshock, xsvvpshock, xsvvrnei, xsvvsedov, xswabs, xswndabs, xsxion, xszagauss, xszbabs, xszbbody, xszbremss, xszdust, xszedge, xszgauss, xszhighect, xszigm, xszpcfabs, xszphabs, xszpowerlw, xszredden, xszsmdust, xsztbabs, xszvarabs, xszvfeabs, xszvphabs, xszwabs, xszwndabs, xszxipcf

Last modified: December 2015
Smithsonian Institute Smithsonian Institute

The Chandra X-Ray Center (CXC) is operated for NASA by the Smithsonian Astrophysical Observatory. 60 Garden Street, Cambridge, MA 02138 USA.   Email:   cxchelp@head.cfa.harvard.edu Smithsonian Institution, Copyright © 1998-2017. All rights reserved.