Chandra X-Ray Observatory
	(CXC)
Skip to the navigation links
Last modified: December 2013

URL: http://cxc.harvard.edu/sherpa/ahelp/xsnsmax.html
Jump to: Description · Bugs · See Also


AHELP for CIAO 4.6 Sherpa v2

xsnsmax

Context: models

Synopsis

Neutron Star Magnetic Atmosphere. XSpec model.

Description

This model interpolates from a grid of neutron star (NS) atmosphere spectra to produce a final spectrum that depends on the parameters listed below. The atmosphere spectra are obtained using the latest equation of state and opacity results for a partially ionized, strongly magnetized hydrogen or mid-Z element plasma. The models are constructed by solving the coupled radiative transfer equations for the two photon polarization modes in a magnetized medium, and the atmosphere is in radiative and hydrostatic equilibrium. The atmosphere models mainly depend on the surface effective temperature Teff and magnetic field strength B and inclination ΘB; there is also a dependence on the surface gravity g=(1+zg)GM/R2, where 1+zg=(1-2GM/R)-1/2 is the gravitational redshift and M and R are the NS mass and radius, respectively.

Two sets of models are given: one set with a single surface B and Teff and a set which is constructed with B and Teff varying across the surface according to the magnetic dipole model (for the latter, θm is the angle between the direction to the observer and the magnetic axis). The effective temperatures span the range log Teff=5.5-6.8 for hydrogen and log Teff.=5.8-6.9 for mid-Z elements(note: for the latter, change temperature range in nsmax_lmodel.dat) The models with single (B,Teff) cover the energy range 0.05-10 keV, while the models with (B,Teff)-distributions cover the range 0.09-5 keV.

This is an additive model component.

xsnsmax Parameters

Number Name Description
1 logteff surface (unredshifted) effective temperature
2 redshift 1+z_g, gravitational redshift
3 specfile switch indicating model to use (see nsmax.dat or model list [http://www.slac.stanford.edu/~wynnho/nsmax_models.dat])
4 norm A; (R_em/d)^2, normalization, where R_em is the size (in km) of the emission region and d is the distance (kpc) to the object Note: A is added automatically by XSPEC.

Please send your comments/questions to Wynn Ho (wynnho@slac.stanford.edu). If you publish results obtained using NSMAX, please reference Ho, W.C.G., Potekhin, A.Y., & Chabrier, G. (2008, ApJS, 178, 102) and also Mori, K. & Ho, W.C.G. (2007, MNRAS, 377, 905) if using the mid-Z models.

XSpec version

This information is taken from the XSpec User's Guide. Version 12.8.0k of the XSpec models is supplied with CIAO 4.6.

Bugs

For a list of known bugs and issues with the XSPEC models, please visit the XSPEC bugs page.

See Also

models
absorptionedge, absorptiongaussian, absorptionlorentz, absorptionvoigt, accretiondisk, atten, bbody, bbodyfreq, beta1d, beta2d, blackbody, box1d, box2d, bpl1d, bremsstrahlung, brokenpowerlaw, ccm, const1d, const2d, cos, delta1d, delta2d, dered, devaucouleurs2d, disk2d, edge, emissiongaussian, emissionlorentz, emissionvoigt, erf, erfc, exp, exp10, fm, gauss1d, gauss2d, hubblereynolds, jdpileup, linebroad, list_model_components, list_models, lmc, log, log10, logabsorption, logemission, logparabola, lorentz1d, lorentz2d, models, normbeta1d, normgauss1d, normgauss2d, opticalgaussian, poisson, polynom1d, polynom2d, polynomial, powerlaw, powlaw1d, recombination, scale1d, scale2d, schechter, seaton, sersic2d, shell2d, sin, sm, smc, sqrt, stephi1d, steplo1d, tablemodel, tan, xgal, xs, xsabsori, xsacisabs, xsapec, xsbapec, xsbbody, xsbbodyrad, xsbexrav, xsbexriv, xsbkn2pow, xsbknpower, xsbmc, xsbremss, xsbvapec, xsbvvapec, xsc6mekl, xsc6pmekl, xsc6pvmkl, xsc6vmekl, xscabs, xscemekl, xscevmkl, xscflow, xscompbb, xscompls, xscompps, xscompst, xscompth, xscomptt, xsconstant, xscplinear, xscutoffpl, xscyclabs, xsdisk, xsdiskbb, xsdiskir, xsdiskline, xsdiskm, xsdisko, xsdiskpbb, xsdiskpn, xsdust, xsedge, xseplogpar, xseqpair, xseqtherm, xsequil, xsexpabs, xsexpdec, xsexpfac, xsezdiskbb, xsgabs, xsgadem, xsgaussian, xsgnei, xsgrad, xsgrbm, xshighecut, xshrefl, xskerrbb, xskerrd, xskerrdisk, xslaor, xslaor2, xslogpar, xslorentz, xsmeka, xsmekal, xsmkcflow, xsnei, xsnotch, xsnpshock, xsnsa, xsnsagrav, xsnsatmos, xsnteea, xsnthcomp, xsoptxagn, xsoptxagnf, xspcfabs, xspegpwrlw, xspexmon, xspexrav, xspexriv, xsphabs, xsplabs, xsplcabs, xsposm, xspowerlaw, xspshock, xspwab, xsraymond, xsredden, xsredge, xsrefsch, xssedov, xssirf, xssmedge, xsspexpcut, xsspline, xssrcut, xssresc, xssss_ice, xsstep, xsswind1, xstbabs, xstbgrain, xstbvarabs, xsuvred, xsvapec, xsvarabs, xsvbremss, xsvequil, xsvgadem, xsvgnei, xsvmcflow, xsvmeka, xsvmekal, xsvnei, xsvnpshock, xsvphabs, xsvpshock, xsvraymond, xsvsedov, xsvvapec, xswabs, xswndabs, xsxion, xszbbody, xszbremss, xszdust, xszedge, xszgauss, xszhighect, xszigm, xszpcfabs, xszphabs, xszpowerlw, xszredden, xszsmdust, xsztbabs, xszvarabs, xszvfeabs, xszvphabs, xszwabs, xszwndabs, xszxipcf

Last modified: December 2013
Smithsonian Institute Smithsonian Institute

The Chandra X-Ray Center (CXC) is operated for NASA by the Smithsonian Astrophysical Observatory. 60 Garden Street, Cambridge, MA 02138 USA.   Email:   cxcweb@head.cfa.harvard.edu Smithsonian Institution, Copyright © 1998-2014. All rights reserved.